版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,它的終邊過(guò)點(diǎn),則的值為()A. B. C. D.2.下圖為一個(gè)正四面體的側(cè)面展開(kāi)圖,為的中點(diǎn),則在原正四面體中,直線與直線所成角的余弦值為()A. B.C. D.3.若的展開(kāi)式中含有常數(shù)項(xiàng),且的最小值為,則()A. B. C. D.4.是的()條件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要5.若、滿足約束條件,則的最大值為()A. B. C. D.6.港珠澳大橋于2018年10月2刻日正式通車,它是中國(guó)境內(nèi)一座連接香港、珠海和澳門(mén)的橋隧工程,橋隧全長(zhǎng)55千米.橋面為雙向六車道高速公路,大橋通行限速100km/h,現(xiàn)對(duì)大橋某路段上1000輛汽車的行駛速度進(jìn)行抽樣調(diào)查.畫(huà)出頻率分布直方圖(如圖),根據(jù)直方圖估計(jì)在此路段上汽車行駛速度在區(qū)間[85,90)的車輛數(shù)和行駛速度超過(guò)90km/h的頻率分別為()A.300, B.300, C.60, D.60,7.設(shè)集合則()A. B. C. D.8.展開(kāi)式中x2的系數(shù)為()A.-1280 B.4864 C.-4864 D.12809.設(shè)函數(shù)是奇函數(shù)的導(dǎo)函數(shù),當(dāng)時(shí),,則使得成立的的取值范圍是()A. B.C. D.10.復(fù)數(shù)的實(shí)部與虛部相等,其中為虛部單位,則實(shí)數(shù)()A.3 B. C. D.11.已知且,函數(shù),若,則()A.2 B. C. D.12.已知曲線且過(guò)定點(diǎn),若且,則的最小值為().A. B.9 C.5 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若,則________.14.為了了解一批產(chǎn)品的長(zhǎng)度(單位:毫米)情況,現(xiàn)抽取容量為400的樣本進(jìn)行檢測(cè),如圖是檢測(cè)結(jié)果的頻率分布直方圖,根據(jù)產(chǎn)品標(biāo)準(zhǔn),單件產(chǎn)品長(zhǎng)度在區(qū)間的一等品,在區(qū)間和的為二等品,其余均為三等品,則樣本中三等品的件數(shù)為_(kāi)_________.15.已知平面向量、的夾角為,且,則的最大值是_____.16.已知函數(shù),對(duì)于任意都有,則的值為_(kāi)_____________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)不等式的解集為M,.(1)證明:;(2)比較與的大小,并說(shuō)明理由.18.(12分)已知函數(shù)(為實(shí)常數(shù)).(1)討論函數(shù)在上的單調(diào)性;(2)若存在,使得成立,求實(shí)數(shù)的取值范圍.19.(12分)如圖,在直三棱柱中,,點(diǎn)分別為和的中點(diǎn).(Ⅰ)棱上是否存在點(diǎn)使得平面平面?若存在,寫(xiě)出的長(zhǎng)并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.(Ⅱ)求二面角的余弦值.20.(12分)等差數(shù)列的前項(xiàng)和為,已知,.(Ⅰ)求數(shù)列的通項(xiàng)公式及前項(xiàng)和為;(Ⅱ)設(shè)為數(shù)列的前項(xiàng)的和,求證:.21.(12分)如圖,在四棱錐中,四邊形是直角梯形,底面,是的中點(diǎn).(1).求證:平面平面;(2).若二面角的余弦值為,求直線與平面所成角的正弦值.22.(10分)已知函數(shù),.(1)討論的單調(diào)性;(2)當(dāng)時(shí),證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)三角函數(shù)定義得到,故,再利用和差公式得到答案.【詳解】∵角的終邊過(guò)點(diǎn),∴,.∴.故選:.【點(diǎn)睛】本題考查了三角函數(shù)定義,和差公式,意在考查學(xué)生的計(jì)算能力.2、C【解析】
將正四面體的展開(kāi)圖還原為空間幾何體,三點(diǎn)重合,記作,取中點(diǎn),連接,即為與直線所成的角,表示出三角形的三條邊長(zhǎng),用余弦定理即可求得.【詳解】將展開(kāi)的正四面體折疊,可得原正四面體如下圖所示,其中三點(diǎn)重合,記作:則為中點(diǎn),取中點(diǎn),連接,設(shè)正四面體的棱長(zhǎng)均為,由中位線定理可得且,所以即為與直線所成的角,,由余弦定理可得,所以直線與直線所成角的余弦值為,故選:C.【點(diǎn)睛】本題考查了空間幾何體中異面直線的夾角,將展開(kāi)圖折疊成空間幾何體,余弦定理解三角形的應(yīng)用,屬于中檔題.3、C【解析】展開(kāi)式的通項(xiàng)為,因?yàn)檎归_(kāi)式中含有常數(shù)項(xiàng),所以,即為整數(shù),故n的最小值為1.所以.故選C點(diǎn)睛:求二項(xiàng)展開(kāi)式有關(guān)問(wèn)題的常見(jiàn)類型及解題策略(1)求展開(kāi)式中的特定項(xiàng).可依據(jù)條件寫(xiě)出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開(kāi)式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫(xiě)出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).4、B【解析】
利用充分條件、必要條件與集合包含關(guān)系之間的等價(jià)關(guān)系,即可得出?!驹斀狻吭O(shè)對(duì)應(yīng)的集合是,由解得且對(duì)應(yīng)的集合是,所以,故是的必要不充分條件,故選B?!军c(diǎn)睛】本題主要考查充分條件、必要條件的判斷方法——集合關(guān)系法。設(shè),如果,則是的充分條件;如果B則是的充分不必要條件;如果,則是的必要條件;如果,則是的必要不充分條件。5、C【解析】
作出不等式組所表示的可行域,平移直線,找出直線在軸上的截距最大時(shí)對(duì)應(yīng)的最優(yōu)解,代入目標(biāo)函數(shù)計(jì)算即可.【詳解】作出滿足約束條件的可行域如圖陰影部分(包括邊界)所示.由,得,平移直線,當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),該直線在軸上的截距最大,此時(shí)取最大值,即.故選:C.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃問(wèn)題,考查線性目標(biāo)函數(shù)的最值,一般利用平移直線的方法找到最優(yōu)解,考查數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.6、B【解析】
由頻率分布直方圖求出在此路段上汽車行駛速度在區(qū)間的頻率即可得到車輛數(shù),同時(shí)利用頻率分布直方圖能求行駛速度超過(guò)的頻率.【詳解】由頻率分布直方圖得:在此路段上汽車行駛速度在區(qū)間的頻率為,∴在此路段上汽車行駛速度在區(qū)間的車輛數(shù)為:,行駛速度超過(guò)的頻率為:.故選:B.【點(diǎn)睛】本題考查頻數(shù)、頻率的求法,考查頻率分布直方圖的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.7、C【解析】
直接求交集得到答案.【詳解】集合,則.故選:.【點(diǎn)睛】本題考查了交集運(yùn)算,屬于簡(jiǎn)單題.8、A【解析】
根據(jù)二項(xiàng)式展開(kāi)式的公式得到具體為:化簡(jiǎn)求值即可.【詳解】根據(jù)二項(xiàng)式的展開(kāi)式得到可以第一個(gè)括號(hào)里出項(xiàng),第二個(gè)括號(hào)里出項(xiàng),或者第一個(gè)括號(hào)里出,第二個(gè)括號(hào)里出,具體為:化簡(jiǎn)得到-1280x2故得到答案為:A.【點(diǎn)睛】求二項(xiàng)展開(kāi)式有關(guān)問(wèn)題的常見(jiàn)類型及解題策略:(1)求展開(kāi)式中的特定項(xiàng).可依據(jù)條件寫(xiě)出第項(xiàng),再由特定項(xiàng)的特點(diǎn)求出值即可.(2)已知展開(kāi)式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫(xiě)出第項(xiàng),由特定項(xiàng)得出值,最后求出其參數(shù).9、D【解析】構(gòu)造函數(shù),令,則,由可得,則是區(qū)間上的單調(diào)遞減函數(shù),且,當(dāng)x∈(0,1)時(shí),g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;當(dāng)x∈(1,+∞)時(shí),g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函數(shù),當(dāng)x∈(-1,0)時(shí),f(x)>0,(x2-1)f(x)<0∴當(dāng)x∈(-∞,-1)時(shí),f(x)>0,(x2-1)f(x)>0.綜上所述,使得(x2-1)f(x)>0成立的x的取值范圍是.本題選擇D選項(xiàng).點(diǎn)睛:函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì)之一,它的應(yīng)用貫穿于整個(gè)高中數(shù)學(xué)的教學(xué)之中.某些數(shù)學(xué)問(wèn)題從表面上看似乎與函數(shù)的單調(diào)性無(wú)關(guān),但如果我們能挖掘其內(nèi)在聯(lián)系,抓住其本質(zhì),那么運(yùn)用函數(shù)的單調(diào)性解題,能起到化難為易、化繁為簡(jiǎn)的作用.因此對(duì)函數(shù)的單調(diào)性進(jìn)行全面、準(zhǔn)確的認(rèn)識(shí),并掌握好使用的技巧和方法,這是非常必要的.根據(jù)題目的特點(diǎn),構(gòu)造一個(gè)適當(dāng)?shù)暮瘮?shù),利用它的單調(diào)性進(jìn)行解題,是一種常用技巧.許多問(wèn)題,如果運(yùn)用這種思想去解決,往往能獲得簡(jiǎn)潔明快的思路,有著非凡的功效.10、B【解析】
利用乘法運(yùn)算化簡(jiǎn)復(fù)數(shù)即可得到答案.【詳解】由已知,,所以,解得.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的概念及復(fù)數(shù)的乘法運(yùn)算,考查學(xué)生的基本計(jì)算能力,是一道容易題.11、C【解析】
根據(jù)分段函數(shù)的解析式,知當(dāng)時(shí),且,由于,則,即可求出.【詳解】由題意知:當(dāng)時(shí),且由于,則可知:,則,∴,則,則.即.故選:C.【點(diǎn)睛】本題考查分段函數(shù)的應(yīng)用,由分段函數(shù)解析式求自變量.12、A【解析】
根據(jù)指數(shù)型函數(shù)所過(guò)的定點(diǎn),確定,再根據(jù)條件,利用基本不等式求的最小值.【詳解】定點(diǎn)為,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,即時(shí)取得最小值.故選:A【點(diǎn)睛】本題考查指數(shù)型函數(shù)的性質(zhì),以及基本不等式求最值,意在考查轉(zhuǎn)化與變形,基本計(jì)算能力,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】
根據(jù)垂直得到,代入計(jì)算得到答案.【詳解】,則,解得,故,故.故答案為:.【點(diǎn)睛】本題考查了根據(jù)向量垂直求參數(shù),向量模,意在考查學(xué)生的計(jì)算能力.14、100.【解析】分析:根據(jù)頻率分布直方圖得到三等品的頻率,然后可求得樣本中三等品的件數(shù).詳解:由題意得,三等品的長(zhǎng)度在區(qū)間,和內(nèi),根據(jù)頻率分布直方圖可得三等品的頻率為,∴樣本中三等品的件數(shù)為.點(diǎn)睛:頻率分布直方圖的縱坐標(biāo)為,因此每一個(gè)小矩形的面積表示樣本個(gè)體落在該區(qū)間內(nèi)的頻率,把小矩形的高視為頻率時(shí)常犯的錯(cuò)誤.15、【解析】
建立平面直角坐標(biāo)系,設(shè),可得,進(jìn)而可得出,,由此將轉(zhuǎn)化為以為自變量的三角函數(shù),利用三角恒等變換思想以及正弦函數(shù)的有界性可得出結(jié)果.【詳解】根據(jù)題意建立平面直角坐標(biāo)系如圖所示,設(shè),,以、為鄰邊作平行四邊形,則,設(shè),則,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,則,當(dāng)時(shí),取最大值.故答案為:.【點(diǎn)睛】本題考查了向量的數(shù)量積最值的計(jì)算,將問(wèn)題轉(zhuǎn)化為角的三角函數(shù)的最值問(wèn)題是解答的關(guān)鍵,考查計(jì)算能力,屬于難題.16、【解析】
由條件得到函數(shù)的對(duì)稱性,從而得到結(jié)果【詳解】∵f=f,∴x=是函數(shù)f(x)=2sin(ωx+φ)的一條對(duì)稱軸.∴f=±2.【點(diǎn)睛】本題考查了正弦型三角函數(shù)的對(duì)稱性,注意對(duì)稱軸必過(guò)最高點(diǎn)或最低點(diǎn),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2).【解析】試題分析:(1)首先求得集合M,然后結(jié)合絕對(duì)值不等式的性質(zhì)即可證得題中的結(jié)論;(2)利用平方做差的方法可證得|1-4ab|>2|a-b|.試題解析:(Ⅰ)證明:記f(x)=|x-1|-|x+2|,則f(x)=,所以解得-<x<,故M=(-,).所以,||≤|a|+|b|<×+×=.(Ⅱ)由(Ⅰ)得0≤a2<,0≤b2<.|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=4(a2-1)(b2-1)>0.所以,|1-4ab|>2|a-b|.18、(1)見(jiàn)解析(2)【解析】
(1)分類討論的值,利用導(dǎo)數(shù)證明單調(diào)性即可;(2)利用導(dǎo)數(shù)分別得出,,時(shí),的最小值,即可得出實(shí)數(shù)的取值范圍.【詳解】(1),.當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞增;當(dāng)即時(shí),時(shí),,在上單調(diào)遞減;時(shí),,在上單調(diào)遞增;當(dāng)即時(shí),,,此時(shí),在上單調(diào)遞減;(2)當(dāng)時(shí),因?yàn)樵谏蠁握{(diào)遞增,所以的最小值為,所以當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增所以的最小值為.因?yàn)?,所以?所以,所以.當(dāng)時(shí),在上單調(diào)遞減所以的最小值為因?yàn)?,所以,所以,綜上,.【點(diǎn)睛】本題主要考查了利用導(dǎo)數(shù)證明函數(shù)的單調(diào)性以及利用導(dǎo)數(shù)研究函數(shù)的存在性問(wèn)題,屬于中檔題.19、(Ⅰ)存在點(diǎn)滿足題意,且,證明詳見(jiàn)解析;(Ⅱ).【解析】
(Ⅰ)可考慮采用補(bǔ)形法,取的中點(diǎn)為,連接,可結(jié)合等腰三角形性質(zhì)和線面垂直性質(zhì),先證平面,即,若能證明,則可得證,可通過(guò)我們反推出點(diǎn)對(duì)應(yīng)位置應(yīng)在處,進(jìn)而得證;(Ⅱ)采用建系法,以為坐標(biāo)原點(diǎn),以分別為軸建立空間直角坐標(biāo)系,分別求出兩平面對(duì)應(yīng)法向量,再結(jié)合向量夾角公式即可求解;【詳解】(Ⅰ)存在點(diǎn)滿足題意,且.證明如下:取的中點(diǎn)為,連接.則,所以平面.因?yàn)槭堑闹悬c(diǎn),所以.在直三棱柱中,平面平面,且交線為,所以平面,所以.在平面內(nèi),,,所以,從而可得.又因?yàn)?,所以平?因?yàn)槠矫?,所以平面平?(Ⅱ)如圖所示,以為坐標(biāo)原點(diǎn),以分別為軸建立空間直角坐標(biāo)系.易知,,,,所以,,.設(shè)平面的法向量為,則有取,得.同理可求得平面的法向量為.則.由圖可知二面角為銳角,所以其余弦值為.【點(diǎn)睛】本題考查面面垂直的判定定理、向量法求二面角的余弦值,屬于中檔題20、(Ⅰ),(Ⅱ)見(jiàn)解析【解析】
(Ⅰ)根據(jù)等差數(shù)列公式直接計(jì)算得到答案.(Ⅱ),根據(jù)裂項(xiàng)求和法計(jì)算得到得到證明.【詳解】(Ⅰ)等差數(shù)列的公差為,由,得,,即,,解得,.∴,.(Ⅱ),∴,∴,即.【點(diǎn)睛】本題考查了等差數(shù)列的基本量的計(jì)算,裂項(xiàng)求和,意在考查學(xué)生對(duì)于數(shù)列公式方法的靈活運(yùn)用.21、(1)見(jiàn)解析;(2).【解析】試題分析:(1)根據(jù)平面有,利用勾股定理可證明,故平面,再由面面垂直的判定定理可證得結(jié)論;(2)在點(diǎn)建立空間直角坐標(biāo)系,利用二面角的余弦值為建立方程求得,在利用法向量求得和平面所成角的正弦值.試題解析:(Ⅰ)平面平面因?yàn)?所以,所以,所以,又,所以平面.因?yàn)槠矫?,所以平面平面.(Ⅱ)如圖,以點(diǎn)為原點(diǎn),分別為軸、軸、軸正方向,建立空間直角坐標(biāo)系,則.設(shè),則取,則為面法向量.設(shè)為面的法向量,則,即,取,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 第一講《小企業(yè)會(huì)計(jì)制度》培訓(xùn)
- 2024高中地理第四章工業(yè)地域的形成與發(fā)展第1節(jié)工業(yè)的區(qū)位選擇練習(xí)含解析新人教版必修2
- 2024高中生物專題5DNA和蛋白質(zhì)技術(shù)課題2多聚酶鏈?zhǔn)椒磻?yīng)擴(kuò)增DNA片段課堂演練含解析新人教版選修1
- 2024高中語(yǔ)文第三課神奇的漢字第1節(jié)字之初本為畫(huà)-漢字的起源練習(xí)含解析新人教版選修語(yǔ)言文字應(yīng)用
- 2024高考地理一輪復(fù)習(xí)第十八單元區(qū)際聯(lián)系與區(qū)域協(xié)調(diào)發(fā)展練習(xí)含解析
- 2024高考化學(xué)二輪復(fù)習(xí)選擇題專項(xiàng)練二含解析
- (4篇)2024大學(xué)社團(tuán)活動(dòng)工作總結(jié)
- 工程質(zhì)量檢測(cè)試驗(yàn)
- 保潔過(guò)程中的環(huán)境保護(hù)控制措施
- 海關(guān)報(bào)關(guān)實(shí)務(wù)4-第三章2知識(shí)課件
- 河南省鄭州外國(guó)語(yǔ)高中-【高二】【上期中】【把握現(xiàn)在 蓄力高三】家長(zhǎng)會(huì)【課件】
- 2025年中煤電力有限公司招聘筆試參考題庫(kù)含答案解析
- 企業(yè)內(nèi)部控制與財(cái)務(wù)風(fēng)險(xiǎn)防范
- 建設(shè)項(xiàng)目施工現(xiàn)場(chǎng)春節(jié)放假期間的安全管理方案
- 胃潴留護(hù)理查房
- 污水處理廠運(yùn)營(yíng)方案計(jì)劃
- 眼科慢病管理新思路
- 劉先生家庭投資理財(cái)規(guī)劃方案設(shè)計(jì)
- 寵物養(yǎng)護(hù)與經(jīng)營(yíng)-大學(xué)專業(yè)介紹
- 利潤(rùn)分配協(xié)議三篇
- 房屋租賃合同樣本樣本
評(píng)論
0/150
提交評(píng)論