版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.將函數(shù)f(x)=sin3x-cos3x+1的圖象向左平移個(gè)單位長(zhǎng)度,得到函數(shù)g(x)的圖象,給出下列關(guān)于g(x)的結(jié)論:①它的圖象關(guān)于直線x=對(duì)稱;②它的最小正周期為;③它的圖象關(guān)于點(diǎn)(,1)對(duì)稱;④它在[]上單調(diào)遞增.其中所有正確結(jié)論的編號(hào)是()A.①② B.②③ C.①②④ D.②③④2.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級(jí)政府相繼啟動(dòng)重大突發(fā)公共衛(wèi)生事件一級(jí)響應(yīng),全國(guó)人心抗擊疫情.下圖表示月日至月日我國(guó)新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯(cuò)誤的是()A.月下旬新增確診人數(shù)呈波動(dòng)下降趨勢(shì)B.隨著全國(guó)醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過(guò)確診人數(shù)C.月日至月日新增確診人數(shù)波動(dòng)最大D.我國(guó)新型冠狀病毒肺炎累計(jì)確診人數(shù)在月日左右達(dá)到峰值3.如圖所示,直三棱柱的高為4,底面邊長(zhǎng)分別是5,12,13,當(dāng)球與上底面三條棱都相切時(shí)球心到下底面距離為8,則球的體積為()A.1605π3 B.6424.已知底面為邊長(zhǎng)為的正方形,側(cè)棱長(zhǎng)為的直四棱柱中,是上底面上的動(dòng)點(diǎn).給出以下四個(gè)結(jié)論中,正確的個(gè)數(shù)是()①與點(diǎn)距離為的點(diǎn)形成一條曲線,則該曲線的長(zhǎng)度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個(gè)面上的正投影長(zhǎng)度之和的最大值為.A. B. C. D.5.若直線與曲線相切,則()A.3 B. C.2 D.6.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B. C. D.7.《易·系辭上》有“河出圖,洛出書”之說(shuō),河圖、洛書是中華文化,陰陽(yáng)術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽(yáng)數(shù),黑點(diǎn)為陰數(shù),若從陰數(shù)和陽(yáng)數(shù)中各取一數(shù),則其差的絕對(duì)值為5的概率為A. B. C. D.8.執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.9.年某省將實(shí)行“”的新高考模式,即語(yǔ)文、數(shù)學(xué)、英語(yǔ)三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒(méi)有偏好,且不受其他因素影響,則甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率為A. B. C. D.10.中,角的對(duì)邊分別為,若,,,則的面積為()A. B. C. D.11.圓錐底面半徑為,高為,是一條母線,點(diǎn)是底面圓周上一點(diǎn),則點(diǎn)到所在直線的距離的最大值是()A. B. C. D.12.已知純虛數(shù)滿足,其中為虛數(shù)單位,則實(shí)數(shù)等于()A. B.1 C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.如圖,在菱形ABCD中,AB=3,,E,F(xiàn)分別為BC,CD上的點(diǎn),,若線段EF上存在一點(diǎn)M,使得,則____________,____________.(本題第1空2分,第2空3分)14.若實(shí)數(shù)滿足約束條件,設(shè)的最大值與最小值分別為,則_____.15.在三棱錐P-ABC中,,,,三個(gè)側(cè)面與底面所成的角均為,三棱錐的內(nèi)切球的表面積為_________.16.若函數(shù)為自然對(duì)數(shù)的底數(shù))在和兩處取得極值,且,則實(shí)數(shù)的取值范圍是______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)當(dāng)時(shí),證明:.18.(12分)如圖,三棱柱中,平面,,,分別為,的中點(diǎn).(1)求證:平面;(2)若平面平面,求直線與平面所成角的正弦值.19.(12分)如圖,在中,點(diǎn)在上,,,.(1)求的值;(2)若,求的長(zhǎng).20.(12分)等差數(shù)列的前項(xiàng)和為,已知,.(Ⅰ)求數(shù)列的通項(xiàng)公式及前項(xiàng)和為;(Ⅱ)設(shè)為數(shù)列的前項(xiàng)的和,求證:.21.(12分)已知,,分別是三個(gè)內(nèi)角,,的對(duì)邊,.(1)求;(2)若,,求,.22.(10分)若數(shù)列前n項(xiàng)和為,且滿足(t為常數(shù),且)(1)求數(shù)列的通項(xiàng)公式:(2)設(shè),且數(shù)列為等比數(shù)列,令,.求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)函數(shù)圖象的平移變換公式求出函數(shù)的解析式,再利用正弦函數(shù)的對(duì)稱性、單調(diào)區(qū)間等相關(guān)性質(zhì)求解即可.【詳解】因?yàn)閒(x)=sin3x-cos3x+1=2sin(3x-)+1,由圖象的平移變換公式知,函數(shù)g(x)=2sin[3(x+)-]+1=2sin(3x+)+1,其最小正周期為,故②正確;令3x+=kπ+,得x=+(k∈Z),所以x=不是對(duì)稱軸,故①錯(cuò)誤;令3x+=kπ,得x=-(k∈Z),取k=2,得x=,故函數(shù)g(x)的圖象關(guān)于點(diǎn)(,1)對(duì)稱,故③正確;令2kπ-≤3x+≤2kπ+,k∈Z,得-≤x≤+,取k=2,得≤x≤,取k=3,得≤x≤,故④錯(cuò)誤;故選:B【點(diǎn)睛】本題考查圖象的平移變換和正弦函數(shù)的對(duì)稱性、單調(diào)性和最小正周期等性質(zhì);考查運(yùn)算求解能力和整體代換思想;熟練掌握正弦函數(shù)的對(duì)稱性、單調(diào)性和最小正周期等相關(guān)性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、常考題型2、D【解析】
根據(jù)新增確診曲線的走勢(shì)可判斷A選項(xiàng)的正誤;根據(jù)新增確診曲線與新增治愈曲線的位置關(guān)系可判斷B選項(xiàng)的正誤;根據(jù)月日至月日新增確診曲線的走勢(shì)可判斷C選項(xiàng)的正誤;根據(jù)新增確診人數(shù)的變化可判斷D選項(xiàng)的正誤.綜合可得出結(jié)論.【詳解】對(duì)于A選項(xiàng),由圖象可知,月下旬新增確診人數(shù)呈波動(dòng)下降趨勢(shì),A選項(xiàng)正確;對(duì)于B選項(xiàng),由圖象可知,隨著全國(guó)醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過(guò)確診人數(shù),B選項(xiàng)正確;對(duì)于C選項(xiàng),由圖象可知,月日至月日新增確診人數(shù)波動(dòng)最大,C選項(xiàng)正確;對(duì)于D選項(xiàng),在月日及以前,我國(guó)新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國(guó)新型冠狀病毒肺炎累計(jì)確診人數(shù)不在月日左右達(dá)到峰值,D選項(xiàng)錯(cuò)誤.故選:D.【點(diǎn)睛】本題考查統(tǒng)計(jì)圖表的應(yīng)用,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.3、A【解析】
設(shè)球心為O,三棱柱的上底面ΔA1B1C1的內(nèi)切圓的圓心為O1,該圓與邊B【詳解】如圖,設(shè)三棱柱為ABC-A1B1C所以底面ΔA1B1C1為斜邊是A1C1則圓O1的半徑為O設(shè)球心為O,則由球的幾何知識(shí)得ΔOO1M所以O(shè)M=2即球O的半徑為25所以球O的體積為43故選A.【點(diǎn)睛】本題考查與球有關(guān)的組合體的問(wèn)題,解答本題的關(guān)鍵有兩個(gè):(1)構(gòu)造以球半徑R、球心到小圓圓心的距離d和小圓半徑r為三邊的直角三角形,并在此三角形內(nèi)求出球的半徑,這是解決與球有關(guān)的問(wèn)題時(shí)常用的方法.(2)若直角三角形的兩直角邊為a,b,斜邊為c,則該直角三角形內(nèi)切圓的半徑r=a+b-c4、C【解析】
①與點(diǎn)距離為的點(diǎn)形成以為圓心,半徑為的圓弧,利用弧長(zhǎng)公式,可得結(jié)論;②當(dāng)在(或時(shí),與面所成角(或的正切值為最小,當(dāng)在時(shí),與面所成角的正切值為最大,可得正切值取值范圍是;③設(shè),,,則,即,可得在前后、左右、上下面上的正投影長(zhǎng),即可求出六個(gè)面上的正投影長(zhǎng)度之和.【詳解】如圖:①錯(cuò)誤,因?yàn)椋c點(diǎn)距離為的點(diǎn)形成以為圓心,半徑為的圓弧,長(zhǎng)度為;②正確,因?yàn)槊婷?,所以點(diǎn)必須在面對(duì)角線上運(yùn)動(dòng),當(dāng)在(或)時(shí),與面所成角(或)的正切值為最?。橄碌酌婷鎸?duì)角線的交點(diǎn)),當(dāng)在時(shí),與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設(shè),則,即,在前后、左右、上下面上的正投影長(zhǎng)分別為,,,所以六個(gè)面上的正投影長(zhǎng)度之,當(dāng)且僅當(dāng)在時(shí)取等號(hào).故選:.【點(diǎn)睛】本題以命題的真假判斷為載體,考查了軌跡問(wèn)題、線面角、正投影等知識(shí)點(diǎn),綜合性強(qiáng),屬于難題.5、A【解析】
設(shè)切點(diǎn)為,對(duì)求導(dǎo),得到,從而得到切線的斜率,結(jié)合直線方程的點(diǎn)斜式化簡(jiǎn)得切線方程,聯(lián)立方程組,求得結(jié)果.【詳解】設(shè)切點(diǎn)為,∵,∴由①得,代入②得,則,,故選A.【點(diǎn)睛】該題考查的是有關(guān)直線與曲線相切求參數(shù)的問(wèn)題,涉及到的知識(shí)點(diǎn)有導(dǎo)數(shù)的幾何意義,直線方程的點(diǎn)斜式,屬于簡(jiǎn)單題目.6、D【解析】
由程序框圖確定程序功能后可得出結(jié)論.【詳解】執(zhí)行該程序可得.故選:D.【點(diǎn)睛】本題考查程序框圖.解題可模擬程序運(yùn)行,觀察變量值的變化,然后可得結(jié)論,也可以由程序框圖確定程序功能,然后求解.7、A【解析】
陽(yáng)數(shù):,陰數(shù):,然后分析陰數(shù)和陽(yáng)數(shù)差的絕對(duì)值為5的情況數(shù),最后計(jì)算相應(yīng)概率.【詳解】因?yàn)殛?yáng)數(shù):,陰數(shù):,所以從陰數(shù)和陽(yáng)數(shù)中各取一數(shù)差的絕對(duì)值有:個(gè),滿足差的絕對(duì)值為5的有:共個(gè),則.故選:A.【點(diǎn)睛】本題考查實(shí)際背景下古典概型的計(jì)算,難度一般.古典概型的概率計(jì)算公式:.8、B【解析】
由題意,框圖的作用是求分段函數(shù)的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,當(dāng);當(dāng)綜上:.故選:B【點(diǎn)睛】本題考查了條件分支的程序框圖,考查了學(xué)生邏輯推理,分類討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.9、B【解析】
甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時(shí)選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計(jì)算公式,可得甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率,故選B.10、A【解析】
先求出,由正弦定理求得,然后由面積公式計(jì)算.【詳解】由題意,.由得,.故選:A.【點(diǎn)睛】本題考查求三角形面積,考查正弦定理,同角間的三角函數(shù)關(guān)系,兩角和的正弦公式與誘導(dǎo)公式,解題時(shí)要根據(jù)已知求值要求確定解題思路,確定選用公式順序,以便正確快速求解.11、C【解析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉(zhuǎn)化求解的位置,推出結(jié)果即可.詳解:圓錐底面半徑為,高為2,是一條母線,點(diǎn)是底面圓周上一點(diǎn),在底面的射影為;,,過(guò)的軸截面如圖:,過(guò)作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點(diǎn)睛:本題考查空間點(diǎn)線面距離的求法,考查空間想象能力以及計(jì)算能力,解題的關(guān)鍵是作出軸截面圖形,屬中檔題.12、B【解析】
先根據(jù)復(fù)數(shù)的除法表示出,然后根據(jù)是純虛數(shù)求解出對(duì)應(yīng)的的值即可.【詳解】因?yàn)?,所以,又因?yàn)槭羌兲摂?shù),所以,所以.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算以及根據(jù)復(fù)數(shù)是純虛數(shù)求解參數(shù)值,難度較易.若復(fù)數(shù)為純虛數(shù),則有.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據(jù)題意,設(shè),則,所以,解得,所以,從而有.14、【解析】
畫出可行域,平移基準(zhǔn)直線到可行域邊界位置,由此求得最大值以及最小值,進(jìn)而求得的比值.【詳解】畫出可行域如下圖所示,由圖可知,當(dāng)直線過(guò)點(diǎn)時(shí),取得最大值7;過(guò)點(diǎn)時(shí),取得最小值2,所以.【點(diǎn)睛】本小題主要考查利用線性規(guī)劃求線性目標(biāo)函數(shù)的最值.這種類型題目的主要思路是:首先根據(jù)題目所給的約束條件,畫出可行域;其次是求得線性目標(biāo)函數(shù)的基準(zhǔn)函數(shù);接著畫出基準(zhǔn)函數(shù)對(duì)應(yīng)的基準(zhǔn)直線;然后通過(guò)平移基準(zhǔn)直線到可行域邊界的位置;最后求出所求的最值.屬于基礎(chǔ)題.15、【解析】
先確定頂點(diǎn)在底面的射影,再求出三棱錐的高以及各側(cè)面三角形的高,利用各個(gè)面的面積和乘以內(nèi)切球半徑等于三棱錐的體積的三倍即可解決.【詳解】設(shè)頂點(diǎn)在底面上的射影為H,H是三角形ABC的內(nèi)心,內(nèi)切圓半徑.三個(gè)側(cè)面與底面所成的角均為,,,的高,,設(shè)內(nèi)切球的半徑為R,∴,內(nèi)切球表面積.故答案為:.【點(diǎn)睛】本題考查三棱錐內(nèi)切球的表面積問(wèn)題,考查學(xué)生空間想象能力,本題解題關(guān)鍵是找到內(nèi)切球的半徑,是一道中檔題.16、【解析】
先將函數(shù)在和兩處取得極值,轉(zhuǎn)化為方程有兩不等實(shí)根,且,再令,將問(wèn)題轉(zhuǎn)化為直線與曲線有兩交點(diǎn),且橫坐標(biāo)滿足,用導(dǎo)數(shù)方法研究單調(diào)性,作出簡(jiǎn)圖,求出時(shí),的值,進(jìn)而可得出結(jié)果.【詳解】因?yàn)?,所以,又函?shù)在和兩處取得極值,所以是方程的兩不等實(shí)根,且,即有兩不等實(shí)根,且,令,則直線與曲線有兩交點(diǎn),且交點(diǎn)橫坐標(biāo)滿足,又,由得,所以,當(dāng)時(shí),,即函數(shù)在上單調(diào)遞增;當(dāng),時(shí),,即函數(shù)在和上單調(diào)遞減;當(dāng)時(shí),由得,此時(shí),因此,由得.故答案為【點(diǎn)睛】本題主要考查導(dǎo)數(shù)的應(yīng)用,已知函數(shù)極值點(diǎn)間的關(guān)系求參數(shù)的問(wèn)題,通常需要將函數(shù)極值點(diǎn),轉(zhuǎn)化為導(dǎo)函數(shù)對(duì)應(yīng)方程的根,再轉(zhuǎn)化為直線與曲線交點(diǎn)的問(wèn)題來(lái)處理,屬于??碱}型.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見解析;(2)見解析【解析】
(1)求導(dǎo)得,分類討論和,利用導(dǎo)數(shù)研究含參數(shù)的函數(shù)單調(diào)性;(2)根據(jù)(1)中求得的的單調(diào)性,得出在處取得最大值為,構(gòu)造函數(shù),利用導(dǎo)數(shù),推出,即可證明不等式.【詳解】解:(1)由于,得,當(dāng)時(shí),,此時(shí)在上遞增;當(dāng)時(shí),由,解得,若,則,若,,此時(shí)在遞增,在上遞減.(2)由(1)知在處取得最大值為:,設(shè),則,令,則,則在單調(diào)遞減,∴,即,則在單調(diào)遞減∴,∴,∴.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和最值,涉及分類討論和構(gòu)造新函數(shù),通過(guò)導(dǎo)數(shù)證明不等式,考查轉(zhuǎn)化思想和計(jì)算能力.18、(1)詳見解析;(2).【解析】
(1)連接,,則且為的中點(diǎn),又∵為的中點(diǎn),∴,又平面,平面,故平面.(2)由平面,得,.以為原點(diǎn),分別以,,所在直線為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,設(shè),則,,,,,.取平面的一個(gè)法向量為,由,得:,令,得同理可得平面的一個(gè)法向量為∵平面平面,∴解得,得,又,設(shè)直線與平面所成角為,則.所以,直線與平面所成角的正弦值是.19、(1);(2).【解析】
(1)由兩角差的正弦公式計(jì)算;(2)由正弦定理求得,再由余弦定理求得.【詳解】(1)因?yàn)椋?因?yàn)?,所以,所?(2)在中,由,得,在中,由余弦定理可得,所以.【點(diǎn)睛】本題考查兩角差的正弦公式,考查正弦定理和余弦定理,屬于中檔題.20、(Ⅰ),(Ⅱ)見解析【解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度年福建省高校教師資格證之高等教育法規(guī)基礎(chǔ)試題庫(kù)和答案要點(diǎn)
- 疫情之下企業(yè)直播告訴發(fā)展遇新機(jī)遇
- 航空模型基礎(chǔ)理論知識(shí)單選題100道及答案解析
- 2024年個(gè)人用工保證協(xié)議參考格式
- 社區(qū)教育志愿者隊(duì)伍建設(shè)研究
- 寫給愛(ài)心捐款的感謝信
- 2024年吊車租賃協(xié)議樣本2
- 2024年石灰石批發(fā)銷售協(xié)議范例
- 2024年權(quán)益過(guò)戶協(xié)議模板
- 2024年度商用空調(diào)安裝協(xié)議范本
- GB/T 44352-2024燃油蒸發(fā)排放系統(tǒng)用活性炭通用要求
- 2024山東濟(jì)南軌道交通集團(tuán)限公司招聘49人高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 市政道路交通疏導(dǎo)方案施工方案
- “數(shù)字三品”應(yīng)用場(chǎng)景典型案例申報(bào)書
- 2024秋三年級(jí)語(yǔ)文上冊(cè)第二次月考達(dá)標(biāo)檢測(cè)卷第三四單元新人教版
- 2024年下半年遼寧事業(yè)單位高頻500題難、易錯(cuò)點(diǎn)模擬試題附帶答案詳解
- 中醫(yī)人工智能
- 人教版(2024)八年級(jí)上冊(cè)物理第3章《物態(tài)變化》單元測(cè)試卷(含答案解析)
- 金屬冶煉(鉛、鋅冶煉)主要負(fù)責(zé)人安全資格考試題庫(kù)及答案
- 2024中國(guó)鐵路集團(tuán)全國(guó)招聘高頻考題難、易錯(cuò)點(diǎn)模擬試題(共500題)附帶答案詳解
- (全冊(cè)各類齊全)二年級(jí)數(shù)學(xué)上冊(cè)100道口算題大全54份(100題)
評(píng)論
0/150
提交評(píng)論