版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等差數(shù)列中,,,若(),則數(shù)列的最大值是()A. B.C.1 D.32.如圖是國家統(tǒng)計局于2020年1月9日發(fā)布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環(huán)比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環(huán)比)根據(jù)該折線圖,下列結(jié)論錯誤的是()A.2019年12月份,全國居民消費價格環(huán)比持平B.2018年12月至2019年12月全國居民消費價格環(huán)比均上漲C.2018年12月至2019年12月全國居民消費價格同比均上漲D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格3.已知橢圓的焦點分別為,,其中焦點與拋物線的焦點重合,且橢圓與拋物線的兩個交點連線正好過點,則橢圓的離心率為()A. B. C. D.4.設(shè)雙曲線(,)的一條漸近線與拋物線有且只有一個公共點,且橢圓的焦距為2,則雙曲線的標準方程為()A. B. C. D.5.設(shè)集合,則()A. B.C. D.6.已知函數(shù)的最大值為,若存在實數(shù),使得對任意實數(shù)總有成立,則的最小值為()A. B. C. D.7.已知集合,集合,則().A. B.C. D.8.已知函數(shù)的導(dǎo)函數(shù)為,記,,…,N.若,則()A. B. C. D.9.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.10.棱長為2的正方體內(nèi)有一個內(nèi)切球,過正方體中兩條異面直線,的中點作直線,則該直線被球面截在球內(nèi)的線段的長為()A. B. C. D.111.已知△ABC中,.點P為BC邊上的動點,則的最小值為()A.2 B. C. D.12.已知函數(shù),存在實數(shù),使得,則的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某中學(xué)舉行了一次消防知識競賽,將參賽學(xué)生的成績進行整理后分為5組,繪制如圖所示的頻率分布直方圖,記圖中從左到右依次為第一、第二、第三、第四、第五組,已知第二組的頻數(shù)是80,則成績在區(qū)間的學(xué)生人數(shù)是__________.14.設(shè)數(shù)列的前n項和為,且,若,則______________.15.已知全集,集合則_____.16.已知,滿足約束條件則的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)的內(nèi)角A,B,C的對邊分別為a,b,c,已知.(1)求B;(2)若,求的面積的最大值.18.(12分)的內(nèi)角的對邊分別為,已知.(1)求的大小;(2)若,求面積的最大值.19.(12分)2018年9月,臺風(fēng)“山竹”在我國多個省市登陸,造成直接經(jīng)濟損失達52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個農(nóng)戶在該次臺風(fēng)中造成的直接經(jīng)濟損失,將收集的數(shù)據(jù)分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.(1)試根據(jù)頻率分布直方圖估計該地區(qū)每個農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);(2)臺風(fēng)后該青年志愿者與當(dāng)?shù)卣蛏鐣l(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農(nóng)戶中隨機抽取2戶進行重點幫扶,設(shè)抽出損失超過8000元的農(nóng)戶數(shù)為,求的分布列和數(shù)學(xué)期望.20.(12分)在直角坐標系中,曲線的參數(shù)方程為以為極點,軸正半軸為極軸建立極坐標系,設(shè)點在曲線上,點在曲線上,且為正三角形.(1)求點,的極坐標;(2)若點為曲線上的動點,為線段的中點,求的最大值.21.(12分)已知函數(shù).(Ⅰ)求函數(shù)的單調(diào)區(qū)間;(Ⅱ)當(dāng)時,求函數(shù)在上最小值.22.(10分)如圖1,與是處在同-個平面內(nèi)的兩個全等的直角三角形,,,連接是邊上一點,過作,交于點,沿將向上翻折,得到如圖2所示的六面體(1)求證:(2)設(shè)若平面底面,若平面與平面所成角的余弦值為,求的值;(3)若平面底面,求六面體的體積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
在等差數(shù)列中,利用已知可求得通項公式,進而,借助函數(shù)的的單調(diào)性可知,當(dāng)時,取最大即可求得結(jié)果.【詳解】因為,所以,即,又,所以公差,所以,即,因為函數(shù),在時,單調(diào)遞減,且;在時,單調(diào)遞減,且.所以數(shù)列的最大值是,且,所以數(shù)列的最大值是3.故選:D.【點睛】本題考查等差數(shù)列的通項公式,考查數(shù)列與函數(shù)的關(guān)系,借助函數(shù)單調(diào)性研究數(shù)列最值問題,難度較易.2.D【解析】
先對圖表數(shù)據(jù)的分析處理,再結(jié)簡單的合情推理一一檢驗即可【詳解】由折線圖易知A、C正確;2019年3月份及6月份的全國居民消費價格環(huán)比是負的,所以B錯誤;設(shè)2018年12月份,2018年11月份,2017年12月份的全國居民消費價格分別為,由題意可知,,,則有,所以D正確.故選:D【點睛】此題考查了對圖表數(shù)據(jù)的分析處理能力及進行簡單的合情推理,屬于中檔題.3.B【解析】
根據(jù)題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點睛】本題考查了橢圓的幾何性質(zhì)、拋物線的幾何性質(zhì),考查了學(xué)生的計算能力,屬于中檔題4.B【解析】
設(shè)雙曲線的漸近線方程為,與拋物線方程聯(lián)立,利用,求出的值,得到的值,求出關(guān)系,進而判斷大小,結(jié)合橢圓的焦距為2,即可求出結(jié)論.【詳解】設(shè)雙曲線的漸近線方程為,代入拋物線方程得,依題意,,橢圓的焦距,,雙曲線的標準方程為.故選:B.【點睛】本題考查橢圓和雙曲線的標準方程、雙曲線的簡單幾何性質(zhì),要注意雙曲線焦點位置,屬于中檔題.5.B【解析】
直接進行集合的并集、交集的運算即可.【詳解】解:;∴.故選:B.【點睛】本題主要考查集合描述法、列舉法的定義,以及交集、并集的運算,是基礎(chǔ)題.6.B【解析】
根據(jù)三角函數(shù)的兩角和差公式得到,進而可以得到函數(shù)的最值,區(qū)間(m,n)長度要大于等于半個周期,最終得到結(jié)果.【詳解】函數(shù)則函數(shù)的最大值為2,存在實數(shù),使得對任意實數(shù)總有成立,則區(qū)間(m,n)長度要大于等于半個周期,即故答案為:B.【點睛】這個題目考查了三角函數(shù)的兩角和差的正余弦公式的應(yīng)用,以及三角函數(shù)的圖像的性質(zhì)的應(yīng)用,題目比較綜合.7.A【解析】
算出集合A、B及,再求補集即可.【詳解】由,得,所以,又,所以,故或.故選:A.【點睛】本題考查集合的交集、補集運算,考查學(xué)生的基本運算能力,是一道基礎(chǔ)題.8.D【解析】
通過計算,可得,最后計算可得結(jié)果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D【點睛】本題考查導(dǎo)數(shù)的計算以及不完全歸納法的應(yīng)用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.9.A【解析】
由題意求得c與的值,結(jié)合隱含條件列式求得a2,b2,則答案可求.【詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【點睛】本題考查雙曲線的簡單性質(zhì),屬于基礎(chǔ)題.10.C【解析】
連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,推導(dǎo)出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內(nèi)的線段的長.【詳解】如圖,MN為該直線被球面截在球內(nèi)的線段連結(jié)并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點睛】本題主要考查該直線被球面截在球內(nèi)的線段的長的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題.11.D【解析】
以BC的中點為坐標原點,建立直角坐標系,可得,設(shè),運用向量的坐標表示,求得點A的軌跡,進而得到關(guān)于a的二次函數(shù),可得最小值.【詳解】以BC的中點為坐標原點,建立如圖的直角坐標系,可得,設(shè),由,可得,即,則,當(dāng)時,的最小值為.故選D.【點睛】本題考查向量數(shù)量積的坐標表示,考查轉(zhuǎn)化思想和二次函數(shù)的值域解法,考查運算能力,屬于中檔題.12.A【解析】
畫出分段函數(shù)圖像,可得,由于,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,分析最值,即得解.【詳解】由于,,由于,令,,在↗,↘故.故選:A【點睛】本題考查了導(dǎo)數(shù)在函數(shù)性質(zhì)探究中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,綜合分析,數(shù)學(xué)運算的能力,屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13.30【解析】
根據(jù)頻率直方圖中數(shù)據(jù)先計算樣本容量,再計算成績在80~100分的頻率,繼而得解.【詳解】根據(jù)直方圖知第二組的頻率是,則樣本容量是,又成績在80~100分的頻率是,則成績在區(qū)間的學(xué)生人數(shù)是.故答案為:30【點睛】本題考查了頻率分布直方圖的應(yīng)用,考查了學(xué)生綜合分析,數(shù)據(jù)處理,數(shù)形運算的能力,屬于基礎(chǔ)題.14.9【解析】
用換中的n,得,作差可得,從而數(shù)列是等比數(shù)列,再由即可得到答案.【詳解】由,得,兩式相減,得,即;又,解得,所以數(shù)列為首項為-3、公比為3的等比數(shù)列,所以.故答案為:9.【點睛】本題考查已知與的關(guān)系求數(shù)列通項的問題,要注意n的范圍,考查學(xué)生運算求解能力,是一道中檔題.15.【解析】
根據(jù)補集的定義求解即可.【詳解】解:.故答案為.【點睛】本題主要考查了補集的運算,屬于基礎(chǔ)題.16.1【解析】
先畫出約束條件的可行域,根據(jù)平移法判斷出最優(yōu)點,代入目標函數(shù)的解析式,易可得到目標函數(shù)的最大值.【詳解】解:由約束條件得如圖所示的三角形區(qū)域,由于,則,要求的最大值,則求的截距的最小值,顯然當(dāng)平行直線過點時,取得最大值為:.故答案為:1.【點睛】本題考查線性規(guī)劃求最值問題,我們常用幾何法求最值.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)由正弦定理邊化角化簡已知條件可求得,即可求得;(2)由余弦定理借助基本不等式可求得,即可求出的面積的最大值.【詳解】(1),,所以,所以,,,,.(2)由余弦定理得.,,當(dāng)且僅當(dāng)時取等,.所以的面積的最大值為.【點睛】本題考查了正余弦定理在解三角形中的應(yīng)用,考查了三角形面積的最值問題,難度較易.18.(1);(2).【解析】
(1)利用正弦定理將邊化角,結(jié)合誘導(dǎo)公式可化簡邊角關(guān)系式,求得,根據(jù)可求得結(jié)果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面積公式可求得結(jié)果.【詳解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(當(dāng)且僅當(dāng)時取等號)即三角形面積的最大值為:【點睛】本題考查解三角形的相關(guān)知識,涉及到正弦定理化簡邊角關(guān)系式、余弦定理解三角形、三角形面積公式應(yīng)用、基本不等式求積的最大值、誘導(dǎo)公式的應(yīng)用等知識,屬于??碱}型.19.(1)3360元;(2)見解析【解析】
(1)根據(jù)頻率分布直方圖計算每個農(nóng)戶的平均損失;(2)根據(jù)頻率分布直方圖計算隨機變量X的可能取值,再求X的分布列和數(shù)學(xué)期望值.【詳解】(1)記每個農(nóng)戶的平均損失為元,則;(2)由頻率分布直方圖,可得損失超過1000元的農(nóng)戶共有(0.00009+0.00003+0.00003)×2000×50=15(戶),損失超過8000元的農(nóng)戶共有0.00003×2000×50=3(戶),隨機抽取2戶,則X的可能取值為0,1,2;計算P(X=0)==,P(X=1)==,P(X=2)==,所以X的分布列為;X012P數(shù)學(xué)期望為E(X)=0×+1×+2×=.【點睛】本題考查了頻率分布直方圖與離散型隨機變量的分布列與數(shù)學(xué)期望計算問題,屬于中檔題.20.(1),;(2).【解析】
(1)利用極坐標和直角坐標的互化公式,即得解;(2)設(shè)點的直角坐標為,則點的直角坐標為.將此代入曲線的方程,可得點在以為圓心,為半徑的圓上,所以的最大值為,即得解.【詳解】(1)因為點在曲線上,為正三角形,所以點在曲線上.又因為點在曲線上,所以點的極坐標是,從而,點的極坐標是.(2)由(1)可知,點的直角坐標為,B的直角坐標為設(shè)點的直角坐標為,則點的直角坐標為.將此代入曲線的方程,有即點在以為圓心,為半徑的圓上.,所以的最大值為.【點睛】本題考查了極坐標和參數(shù)方程綜合,考查了極坐標和直角坐標互化,參數(shù)方程的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.21.(Ⅰ)見解析;(Ⅱ)當(dāng)時,函數(shù)的最小值是;當(dāng)時,函數(shù)的最小值是【解析】
(1)求出導(dǎo)函數(shù),并且解出它的零點x=,再分區(qū)間討論導(dǎo)數(shù)的正負,即可得到函數(shù)f(x)的單調(diào)區(qū)間;
(2)分三種情況加以討論,結(jié)合函數(shù)的單調(diào)性與函數(shù)值的大小比較,即可得到當(dāng)0<a<ln2時,函數(shù)f(x)的最小值是-a;當(dāng)a≥ln2時,函數(shù)f(x)的最小值是ln2-2a.【詳解】函數(shù)的定義域
為.
因為,令,可得;
當(dāng)時,;當(dāng)時,,綜上所述:可知函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為當(dāng),即時,函數(shù)在區(qū)間上是減函數(shù),
的最小值是當(dāng),即時,函數(shù)在區(qū)間上是增函數(shù),的最小值是當(dāng),即時,函數(shù)在上是增函數(shù),在上是減函數(shù).
又,
當(dāng)時,的最小值是;
當(dāng)時,的最小值為綜上所述,結(jié)論為當(dāng)時,函數(shù)的最小值是;
當(dāng)時,函數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二四年度招標文件與投標文件對接服務(wù)合同
- 2025年度金融產(chǎn)品出資轉(zhuǎn)讓風(fēng)險評估合同4篇
- 2025年度國際人力資源派遣與管理合同3篇
- 2025年智慧社區(qū)項目聯(lián)合體EPC協(xié)議書模板3篇
- 二零二五版商用鍋爐運行安全保障合同范本3篇
- 二零二四年度養(yǎng)老產(chǎn)業(yè)投資擔(dān)保合同大全3篇
- 二零二五欠條收藏版:古董郵票收藏與交易協(xié)議3篇
- 個人聘用合同書2024年度標的:知名藝術(shù)家經(jīng)紀3篇
- 2025服裝的代理合同范文
- 2025關(guān)于私人的借款合同范本
- 2024山西廣播電視臺招聘專業(yè)技術(shù)崗位編制人員20人歷年高頻500題難、易錯點模擬試題附帶答案詳解
- 新材料行業(yè)系列深度報告一:新材料行業(yè)研究框架
- 人教版小學(xué)英語各冊單詞表(帶英標)
- 廣東省潮州市潮安區(qū)2023-2024學(xué)年六年級上學(xué)期期末考試數(shù)學(xué)試題
- 鄉(xiāng)村治理中正式制度與非正式制度的關(guān)系解析
- 智能護理:人工智能助力的醫(yī)療創(chuàng)新
- 國家中小學(xué)智慧教育平臺培訓(xùn)專題講座
- 5G+教育5G技術(shù)在智慧校園教育專網(wǎng)系統(tǒng)的應(yīng)用
- VI設(shè)計輔助圖形設(shè)計
- 淺談小學(xué)勞動教育的開展與探究 論文
- 2023年全國4月高等教育自學(xué)考試管理學(xué)原理00054試題及答案新編
評論
0/150
提交評論