![新高考數(shù)學(xué)二輪考點(diǎn)培優(yōu)專題(精講+精練)30 阿波羅尼斯圓和蒙日?qǐng)A的問題(原卷版)_第1頁(yè)](http://file4.renrendoc.com/view14/M03/3E/1B/wKhkGWa65Y-AfE65AAHg0S-l4ik668.jpg)
![新高考數(shù)學(xué)二輪考點(diǎn)培優(yōu)專題(精講+精練)30 阿波羅尼斯圓和蒙日?qǐng)A的問題(原卷版)_第2頁(yè)](http://file4.renrendoc.com/view14/M03/3E/1B/wKhkGWa65Y-AfE65AAHg0S-l4ik6682.jpg)
![新高考數(shù)學(xué)二輪考點(diǎn)培優(yōu)專題(精講+精練)30 阿波羅尼斯圓和蒙日?qǐng)A的問題(原卷版)_第3頁(yè)](http://file4.renrendoc.com/view14/M03/3E/1B/wKhkGWa65Y-AfE65AAHg0S-l4ik6683.jpg)
![新高考數(shù)學(xué)二輪考點(diǎn)培優(yōu)專題(精講+精練)30 阿波羅尼斯圓和蒙日?qǐng)A的問題(原卷版)_第4頁(yè)](http://file4.renrendoc.com/view14/M03/3E/1B/wKhkGWa65Y-AfE65AAHg0S-l4ik6684.jpg)
![新高考數(shù)學(xué)二輪考點(diǎn)培優(yōu)專題(精講+精練)30 阿波羅尼斯圓和蒙日?qǐng)A的問題(原卷版)_第5頁(yè)](http://file4.renrendoc.com/view14/M03/3E/1B/wKhkGWa65Y-AfE65AAHg0S-l4ik6685.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
素養(yǎng)拓展30阿波羅尼斯圓和蒙日?qǐng)A的問題(精講+精練)一、知識(shí)點(diǎn)梳理一、知識(shí)點(diǎn)梳理一、阿波羅尼斯圓1.阿波羅尼斯圓的定義在平面上給定兩點(diǎn)SKIPIF1<0,設(shè)SKIPIF1<0點(diǎn)在同一平面上且滿足SKIPIF1<0,當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),SKIPIF1<0點(diǎn)的軌跡是個(gè)圓,稱之為阿波羅尼斯圓.(SKIPIF1<0時(shí)SKIPIF1<0點(diǎn)的軌跡是線段SKIPIF1<0的中垂線)2.阿波羅尼斯圓的證明設(shè)SKIPIF1<0.若SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),則點(diǎn)SKIPIF1<0的軌跡方程是SKIPIF1<0,其軌跡是以SKIPIF1<0為圓心,半徑為SKIPIF1<0的圓.證明:由SKIPIF1<0及兩點(diǎn)間距離公式,可得SKIPIF1<0,化簡(jiǎn)可得SKIPIF1<0①,(1)當(dāng)SKIPIF1<0時(shí),得SKIPIF1<0,此時(shí)動(dòng)點(diǎn)的軌跡是線段SKIPIF1<0的垂直平分線;(2)當(dāng)SKIPIF1<0時(shí),方程①兩邊都除以SKIPIF1<0得SKIPIF1<0,化為標(biāo)準(zhǔn)形式即為:SKIPIF1<0,∴點(diǎn)SKIPIF1<0的軌跡方程是以SKIPIF1<0為圓心,半徑為SKIPIF1<0的圓.圖①圖②圖③【定理】SKIPIF1<0為兩已知點(diǎn),SKIPIF1<0分別為線段SKIPIF1<0的定比為SKIPIF1<0的內(nèi)外分點(diǎn),則以SKIPIF1<0為直徑的圓SKIPIF1<0上任意點(diǎn)SKIPIF1<0到SKIPIF1<0兩點(diǎn)的距離之比為SKIPIF1<0.證明:以SKIPIF1<0為例.如圖②,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.過SKIPIF1<0作SKIPIF1<0的垂線圓SKIPIF1<0交于SKIPIF1<0兩點(diǎn),由相交弦定理及勾股定理得SKIPIF1<0,于是SKIPIF1<0.SKIPIF1<0同時(shí)在到SKIPIF1<0兩點(diǎn)距離之比等于SKIPIF1<0的圓上,而不共線的三點(diǎn)所確定的圓是唯一的,SKIPIF1<0圓SKIPIF1<0上任意一點(diǎn)SKIPIF1<0到SKIPIF1<0兩點(diǎn)的距離之比恒為SKIPIF1<0.同理可證SKIPIF1<0的情形.3.阿波羅尼斯圓的相關(guān)結(jié)論【結(jié)論1】當(dāng)SKIPIF1<0時(shí),點(diǎn)B在圓SKIPIF1<0內(nèi),點(diǎn)A在圓SKIPIF1<0外;當(dāng)SKIPIF1<0時(shí),點(diǎn)A在圓SKIPIF1<0內(nèi),點(diǎn)B在圓SKIPIF1<0外.【結(jié)論2】因SKIPIF1<0,故SKIPIF1<0是圓SKIPIF1<0的一條切線.若已知圓SKIPIF1<0及圓SKIPIF1<0外一點(diǎn)A,可以作出與之對(duì)應(yīng)的點(diǎn)B,反之亦然.【結(jié)論3】所作出的阿波羅尼斯圓的直徑為SKIPIF1<0,面積為SKIPIF1<0.【結(jié)論4】過點(diǎn)SKIPIF1<0作圓SKIPIF1<0的切線SKIPIF1<0(SKIPIF1<0為切點(diǎn)),則SKIPIF1<0分別為SKIPIF1<0的內(nèi)、外角平分線.【結(jié)論5】阿波羅尼斯圓的直徑兩端是按比例內(nèi)分SKIPIF1<0和外分SKIPIF1<0所得的兩個(gè)分點(diǎn),如圖所示,SKIPIF1<0是SKIPIF1<0的內(nèi)分點(diǎn),SKIPIF1<0是SKIPIF1<0的外分點(diǎn),此時(shí)必有SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0的外角.證明:如圖①,由已知可得SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0SKIPIF1<0平分SKIPIF1<0.由等角的余角相等可得SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0的外角.【結(jié)論6】過點(diǎn)SKIPIF1<0作圓SKIPIF1<0不與SKIPIF1<0重合的弦SKIPIF1<0,則AB平分SKIPIF1<0.證明:如圖③,連結(jié)SKIPIF1<0,由已知SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),又SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0.SKIPIF1<0平分SKIPIF1<0.二、蒙日?qǐng)A1.蒙日?qǐng)A的定義在橢圓上,任意兩條相互垂直的切線的交點(diǎn)都在同一個(gè)圓上,它的圓心是橢圓的中心,半徑等于橢圓長(zhǎng)半軸短半軸平方和的幾何平方根,這個(gè)圓叫蒙日?qǐng)A,如圖1.證明:設(shè)橢圓的方程為SKIPIF1<0,則橢圓兩條互相垂直的切線SKIPIF1<0交點(diǎn)SKIPIF1<0的軌跡是蒙日?qǐng)A:SKIPIF1<0.①當(dāng)題設(shè)中的兩條互相垂直的切線SKIPIF1<0斜率均存在且不為SKIPIF1<0時(shí),可設(shè)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),過SKIPIF1<0的橢圓的切線方程為SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,由其判別式值為SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0是這個(gè)關(guān)于SKIPIF1<0的一元二次方程的兩個(gè)根,SKIPIF1<0,由已知SKIPIF1<0點(diǎn)SKIPIF1<0的坐標(biāo)滿足方程SKIPIF1<0.②當(dāng)題設(shè)中的兩條互相垂直的切線SKIPIF1<0有斜率不存在或斜率為SKIPIF1<0時(shí),可得點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0或SKIPIF1<0,此時(shí)點(diǎn)SKIPIF1<0也在圓SKIPIF1<0上.綜上所述:橢圓SKIPIF1<0兩條互相垂直的切線SKIPIF1<0交點(diǎn)SKIPIF1<0的軌跡是蒙日?qǐng)A:SKIPIF1<0.2.蒙日?qǐng)A的幾何性質(zhì)【結(jié)論1】過圓SKIPIF1<0上的動(dòng)點(diǎn)SKIPIF1<0作橢圓SKIPIF1<0的兩條切線SKIPIF1<0,則SKIPIF1<0.證明:設(shè)SKIPIF1<0點(diǎn)坐標(biāo)SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,由其判別式的值為0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是這個(gè)關(guān)于SKIPIF1<0的一元二次方程的兩個(gè)根,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【結(jié)論2】設(shè)SKIPIF1<0為蒙日?qǐng)AO:SKIPIF1<0上任一點(diǎn),過點(diǎn)SKIPIF1<0作橢圓SKIPIF1<0的兩條切線,交橢圓于點(diǎn)SKIPIF1<0為原點(diǎn),則SKIPIF1<0的斜率乘積為定值SKIPIF1<0.【結(jié)論3】設(shè)SKIPIF1<0為蒙日?qǐng)AO:SKIPIF1<0上任一點(diǎn),過點(diǎn)SKIPIF1<0作橢圓SKIPIF1<0的兩條切線,切點(diǎn)分別為SKIPIF1<0為原點(diǎn),則SKIPIF1<0的斜率乘積為定值SKIPIF1<0,且SKIPIF1<0的斜率乘積為定值SKIPIF1<0(垂徑定理的推廣).【結(jié)論4】過圓SKIPIF1<0上的動(dòng)點(diǎn)SKIPIF1<0作橢圓SKIPIF1<0的兩條切線,O為原點(diǎn),則SKIPIF1<0平分橢圓的切點(diǎn)弦SKIPIF1<0.證明:SKIPIF1<0點(diǎn)坐標(biāo)SKIPIF1<0,直線SKIPIF1<0斜率SKIPIF1<0,由切點(diǎn)弦公式得到SKIPIF1<0方程SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由點(diǎn)差法可知,SKIPIF1<0平分SKIPIF1<0,如圖SKIPIF1<0是中點(diǎn).【結(jié)論5】設(shè)SKIPIF1<0為蒙日?qǐng)ASKIPIF1<0SKIPIF1<0上任一點(diǎn),過點(diǎn)P作橢圓SKIPIF1<0的兩條切線,交蒙日?qǐng)AO于兩點(diǎn)C,D,則SKIPIF1<0的斜率乘積為定值SKIPIF1<0.【結(jié)論6】設(shè)SKIPIF1<0為蒙日?qǐng)ASKIPIF1<0上任一點(diǎn),過點(diǎn)SKIPIF1<0作橢圓SKIPIF1<0的兩條切線,切點(diǎn)分別為SKIPIF1<0為原點(diǎn),則SKIPIF1<0的斜率乘積為定值:SKIPIF1<0.【結(jié)論7】設(shè)SKIPIF1<0為蒙日?qǐng)ASKIPIF1<0上任一點(diǎn),過點(diǎn)SKIPIF1<0作橢圓SKIPIF1<0的兩條切線,切點(diǎn)分別為SKIPIF1<0為原點(diǎn),則SKIPIF1<0的最大值為SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0.【結(jié)論8】設(shè)SKIPIF1<0為蒙日?qǐng)ASKIPIF1<0上任一點(diǎn),過點(diǎn)SKIPIF1<0作橢圓SKIPIF1<0的兩條切線,切點(diǎn)分別為SKIPIF1<0,則SKIPIF1<0的最大值為SKIPIF1<0的最小值為SKIPIF1<0.二、題型精講精練二、題型精講精練【典例1】設(shè)SKIPIF1<0,SKIPIF1<0是平面上兩點(diǎn),則滿足SKIPIF1<0(其中SKIPIF1<0為常數(shù),SKIPIF1<0且SKIPIF1<0)的點(diǎn)SKIPIF1<0的軌跡是一個(gè)圓,這個(gè)軌跡最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),故稱阿波羅尼斯圓,簡(jiǎn)稱阿氏圓,已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0.(1)求點(diǎn)SKIPIF1<0所在圓SKIPIF1<0的方程.(2)已知圓SKIPIF1<0與SKIPIF1<0軸交于SKIPIF1<0,SKIPIF1<0兩點(diǎn)(點(diǎn)SKIPIF1<0在點(diǎn)SKIPIF1<0的左邊),斜率不為0的直線SKIPIF1<0過點(diǎn)SKIPIF1<0且與圓SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),證明:SKIPIF1<0.【典例2】已知橢圓SKIPIF1<0的一個(gè)焦點(diǎn)為SKIPIF1<0,離心率為SKIPIF1<0.(I)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(II)若動(dòng)點(diǎn)SKIPIF1<0為橢圓外一點(diǎn),且點(diǎn)SKIPIF1<0到橢圓SKIPIF1<0的兩條切線相互垂直,求點(diǎn)SKIPIF1<0的軌跡方程.【題型訓(xùn)練-刷模擬】1.阿波羅尼斯圓一、單選題1.我們都知道:平面內(nèi)到兩定點(diǎn)距離之比等于定值(不為1)的動(dòng)點(diǎn)軌跡為圓.后來(lái)該軌跡被人們稱為阿波羅尼斯圓.已知平面內(nèi)有兩點(diǎn)SKIPIF1<0和SKIPIF1<0,且該平面內(nèi)的點(diǎn)SKIPIF1<0滿足SKIPIF1<0,若點(diǎn)SKIPIF1<0的軌跡關(guān)于直線SKIPIF1<0對(duì)稱,則SKIPIF1<0的最小值是(
)A.10 B.20 C.30 D.402.古希臘數(shù)學(xué)家阿波羅尼斯的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)SKIPIF1<0且SKIPIF1<0的點(diǎn)的軌跡是圓,后人將之稱為阿波羅尼斯圓.現(xiàn)有橢圓SKIPIF1<0為橢圓SKIPIF1<0長(zhǎng)軸的端點(diǎn),SKIPIF1<0為橢圓SKIPIF1<0短軸的端點(diǎn),SKIPIF1<0,SKIPIF1<0分別為橢圓SKIPIF1<0的左右焦點(diǎn),動(dòng)點(diǎn)SKIPIF1<0滿足SKIPIF1<0面積的最大值為SKIPIF1<0面積的最小值為SKIPIF1<0,則橢圓SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.阿波羅尼斯是古希臘著名的數(shù)學(xué)家,對(duì)圓錐曲線有深刻而系統(tǒng)的研究,阿波羅尼斯圓就是他的研究成果之一,指的是:已知?jiǎng)狱c(diǎn)M與兩定點(diǎn)Q,P的距離之比SKIPIF1<0,那么點(diǎn)SKIPIF1<0的軌跡就是阿波羅尼斯圓.已知?jiǎng)狱c(diǎn)SKIPIF1<0的軌跡是阿波羅尼斯圓,其方程為SKIPIF1<0,定點(diǎn)SKIPIF1<0為SKIPIF1<0軸上一點(diǎn),SKIPIF1<0且SKIPIF1<0,若點(diǎn)SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.阿波羅尼斯是古希臘著名數(shù)學(xué)家,與阿基米德、歐幾里得并稱為亞歷山大時(shí)期數(shù)學(xué)三巨匠,他研究發(fā)現(xiàn):如果一個(gè)動(dòng)點(diǎn)SKIPIF1<0到兩個(gè)定點(diǎn)的距離之比為常數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),那么點(diǎn)SKIPIF1<0的軌跡為圓,這就是著名的阿波羅尼斯圓.若點(diǎn)SKIPIF1<0到SKIPIF1<0,SKIPIF1<0的距離比為SKIPIF1<0,則點(diǎn)SKIPIF1<0到直線SKIPIF1<0:SKIPIF1<0的距離的最大值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.?dāng)?shù)學(xué)家阿波羅尼斯證明過這樣一個(gè)命題:平面內(nèi)到兩定點(diǎn)距離之比為常數(shù)SKIPIF1<0且SKIPIF1<0的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓,簡(jiǎn)稱阿氏圓.已知在平面直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0,動(dòng)點(diǎn)SKIPIF1<0滿足SKIPIF1<0,得到動(dòng)點(diǎn)SKIPIF1<0的軌跡是阿氏圓SKIPIF1<0.若對(duì)任意實(shí)數(shù)SKIPIF1<0,直線SKIPIF1<0與圓SKIPIF1<0恒有公共點(diǎn),則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<06.阿波羅尼斯是古希臘著名數(shù)學(xué)家,與歐幾里得?阿基米德被稱為亞歷山大時(shí)期數(shù)學(xué)三巨匠,阿波羅尼斯發(fā)現(xiàn):平面內(nèi)到兩個(gè)定點(diǎn)SKIPIF1<0的距離之比為定值SKIPIF1<0,且SKIPIF1<0的點(diǎn)的軌跡是圓,此圓被稱為“阿波羅尼斯圓”.在平面直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0滿足SKIPIF1<0.設(shè)點(diǎn)SKIPIF1<0的軌跡為曲線SKIPIF1<0,則下列說(shuō)法錯(cuò)誤的是(
)A.SKIPIF1<0的方程為SKIPIF1<0B.當(dāng)SKIPIF1<0三點(diǎn)不共線時(shí),則SKIPIF1<0C.在C上存在點(diǎn)M,使得SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<07.已知平面上兩定點(diǎn)A,B,則所有滿足SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的點(diǎn)P的軌跡是一個(gè)圓心在直線AB上,半徑為SKIPIF1<0的圓.這個(gè)軌跡最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),故稱作阿氏圓.已知?jiǎng)狱c(diǎn)P在棱長(zhǎng)為6的正方體SKIPIF1<0的一個(gè)側(cè)面SKIPIF1<0上運(yùn)動(dòng),且滿足SKIPIF1<0,則點(diǎn)P的軌跡長(zhǎng)度為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題8.古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得?阿基米德齊名,他發(fā)現(xiàn):平面內(nèi)到兩個(gè)定點(diǎn)SKIPIF1<0的距離之比為定值SKIPIF1<0且SKIPIF1<0的點(diǎn)的軌跡是一個(gè)圓,人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡(jiǎn)稱阿氏圓.已知在平面直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0滿足SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0的軌跡為曲線SKIPIF1<0,下列結(jié)論正確的是(
)A.曲線SKIPIF1<0的方程為SKIPIF1<0B.曲線SKIPIF1<0與圓SKIPIF1<0外切C.曲線SKIPIF1<0被直線SKIPIF1<0截得的弦長(zhǎng)為SKIPIF1<0D.曲線SKIPIF1<0上恰有三個(gè)點(diǎn)到直線SKIPIF1<0的距離為19.古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名,他發(fā)現(xiàn):“平面內(nèi)到兩個(gè)定點(diǎn)A,B的距離之比為定值SKIPIF1<0的點(diǎn)的軌跡是圓.”后來(lái)人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡(jiǎn)稱阿氏圓.在平面直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0滿足SKIPIF1<0,點(diǎn)SKIPIF1<0的軌跡為曲線SKIPIF1<0,下列結(jié)論正確的是(
)A.曲線SKIPIF1<0的方程為SKIPIF1<0B.直線SKIPIF1<0與曲線SKIPIF1<0有公共點(diǎn)C.曲線SKIPIF1<0被SKIPIF1<0軸截得的弦長(zhǎng)為SKIPIF1<0D.SKIPIF1<0面積的最大值為SKIPIF1<010.古希臘著名數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn):平面內(nèi)到兩個(gè)定點(diǎn)SKIPIF1<0,SKIPIF1<0的距離之比為定值SKIPIF1<0的點(diǎn)的軌跡是圓,此圓被稱為“阿波羅尼斯圓”.在平面直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0滿足SKIPIF1<0.設(shè)點(diǎn)SKIPIF1<0的軌跡為SKIPIF1<0,則(
).A.軌跡SKIPIF1<0的方程為SKIPIF1<0B.在SKIPIF1<0軸上存在異于SKIPIF1<0,SKIPIF1<0的兩點(diǎn)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0C.當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)不共線時(shí),射線SKIPIF1<0是SKIPIF1<0的角平分線D.在SKIPIF1<0上存在點(diǎn)SKIPIF1<0,使得SKIPIF1<011.阿波羅尼斯是古希臘著名數(shù)學(xué)家,與歐幾里得、阿基米德被稱為亞歷山大時(shí)期數(shù)學(xué)三巨匠,阿波羅尼斯發(fā)現(xiàn):平面內(nèi)到兩個(gè)定點(diǎn)SKIPIF1<0,SKIPIF1<0的距離之比為定值SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)的點(diǎn)的軌跡是圓,此圓被稱為“阿波羅尼斯圓”.在平面直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0滿足SKIPIF1<0.設(shè)點(diǎn)SKIPIF1<0的軌跡為曲線SKIPIF1<0,則下列說(shuō)法正確的是(
)A.SKIPIF1<0的方程為SKIPIF1<0B.當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)不共線時(shí),則SKIPIF1<0C.在SKIPIF1<0上存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0的最小值為SKIPIF1<0三、填空題12.阿波羅尼斯(約前262—前190年)證明過這樣一個(gè)命題:平面內(nèi)到兩定點(diǎn)距離之比為常數(shù)SKIPIF1<0的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓.若平面內(nèi)兩定點(diǎn)SKIPIF1<0,SKIPIF1<0,動(dòng)點(diǎn)P滿足SKIPIF1<0,則點(diǎn)P的軌跡方程是.13.阿波羅尼斯證明過這樣一個(gè)命題:平面內(nèi)到兩定點(diǎn)距離之比為常數(shù)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓.若平面內(nèi)兩定點(diǎn)A,B間的距離為3,動(dòng)點(diǎn)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的范圍為.14.阿波羅尼斯的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡幾乎使后人沒有插足的余地.他證明過這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿氏圓,現(xiàn)有SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0的面積最大時(shí),則SKIPIF1<0的長(zhǎng)為.15.希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得?阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個(gè)定點(diǎn)A,B的距離之比為定值SKIPIF1<0的點(diǎn)的軌跡是圓”.后來(lái),人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡(jiǎn)稱阿氏圓.已知在平面直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0是滿足SKIPIF1<0的阿氏圓上的任一點(diǎn),若拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,過點(diǎn)SKIPIF1<0的直線與此阿氏圓相交所得的最長(zhǎng)弦與最短弦的和為.16.已知平面上兩定點(diǎn)A、B,則所有滿足SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的點(diǎn)P的軌跡是一個(gè)圓心在直線AB上,半徑為SKIPIF1<0的圓.這個(gè)軌跡最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),故稱作阿氏圓.已知棱長(zhǎng)為3的正方體ABCD-A1B1C1D1表面上動(dòng)點(diǎn)P滿足SKIPIF1<0,則點(diǎn)P的軌跡長(zhǎng)度為.四、解答題17.古希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得?阿基米德齊名,他發(fā)現(xiàn):“平面內(nèi)到兩個(gè)定點(diǎn)SKIPIF1<0,SKIPIF1<0的距離之比為定值SKIPIF1<0且SKIPIF1<0的點(diǎn)的軌跡是圓”.后來(lái),人們將這個(gè)圓以他的名字命名,稱為阿波羅尼斯圓,簡(jiǎn)稱阿氏圓.在平面直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,動(dòng)點(diǎn)SKIPIF1<0滿足SKIPIF1<0.設(shè)點(diǎn)SKIPIF1<0的軌跡為SKIPIF1<0.(1)求曲線SKIPIF1<0的方程;(2)若曲線SKIPIF1<0和SKIPIF1<0無(wú)公共點(diǎn),求SKIPIF1<0的取值范圍.18.平面上兩點(diǎn)A、B,則所有滿足SKIPIF1<0且k不等于1的點(diǎn)P的軌跡是一個(gè)圓,這個(gè)軌跡最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),故稱阿氏圓.已知圓SKIPIF1<0上的動(dòng)點(diǎn)P滿足:SKIPIF1<0其中O為坐標(biāo)原點(diǎn),A點(diǎn)的坐標(biāo)為SKIPIF1<0.(1)直線SKIPIF1<0上任取一點(diǎn)Q,作圓SKIPIF1<0的切線,切點(diǎn)分別為M,N,求四邊形SKIPIF1<0面積的最小值;(2)在(1)的條件下,證明:直線MN恒過一定點(diǎn)并寫出該定點(diǎn)坐標(biāo).19.阿波羅尼斯是古希臘著名數(shù)學(xué)家,他的主要研究成果集中在他的代表作《圓錐曲線》一書中.阿波羅尼斯圓是他的研究成果之一,指的是已知?jiǎng)狱c(diǎn)SKIPIF1<0與兩定點(diǎn)SKIPIF1<0,SKIPIF1<0的距離之比SKIPIF1<0,SKIPIF1<0是一個(gè)常數(shù),那么動(dòng)點(diǎn)SKIPIF1<0的軌跡就是阿波羅尼斯圓,圓心在直線SKIPIF1<0上.已知?jiǎng)狱c(diǎn)SKIPIF1<0的軌跡是阿波羅尼斯圓,其方程為SKIPIF1<0,定點(diǎn)分別為橢圓SKIPIF1<0的右焦點(diǎn)SKIPIF1<0與右頂點(diǎn)SKIPIF1<0,且橢圓SKIPIF1<0的離心率為SKIPIF1<0.(1)求橢圓SKIPIF1<0的標(biāo)準(zhǔn)方程;(2)如圖,過右焦點(diǎn)SKIPIF1<0斜率為SKIPIF1<0的直線SKIPIF1<0與橢圓SKIPIF1<0相交于SKIPIF1<0,SKIPIF1<0(點(diǎn)SKIPIF1<0在SKIPIF1<0軸上方),點(diǎn)SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0上異于SKIPIF1<0,SKIPIF1<0的兩點(diǎn),SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0.①求SKIPIF1<0的取值范圍;②將點(diǎn)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0看作一個(gè)阿波羅尼斯圓上的三點(diǎn),若SKIPIF1<0外接圓的面積為SKIPIF1<0,求直線SKIPIF1<0的方程.2.蒙日?qǐng)A一、單選題1.加斯帕爾·蒙日(圖1)是18~19世紀(jì)法國(guó)著名的幾何學(xué)家,他在研究圓錐曲線時(shí)發(fā)現(xiàn):橢圓的任意兩條互相垂直的切線的交點(diǎn)都在同一個(gè)圓上,其圓心是橢圓的中心,這個(gè)圓被稱為“蒙日?qǐng)A”(圖2).則橢圓SKIPIF1<0的蒙日?qǐng)A的半徑為(
)A.3 B.4 C.5 D.62.畫法幾何創(chuàng)始人蒙日發(fā)現(xiàn):橢圓上兩條互相垂直的切線的交點(diǎn)必在一個(gè)與橢圓同心的圓上,且圓半徑的平方等于長(zhǎng)半軸?短半軸的平方和,此圓被命名為該橢圓的蒙日?qǐng)A.若橢圓SKIPIF1<0的蒙日?qǐng)A為SKIPIF1<0,則該橢圓的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.法國(guó)數(shù)學(xué)家加斯帕·蒙日被稱為“畫法幾何創(chuàng)始人”“微分幾何之父”.他發(fā)現(xiàn)與橢圓相切的兩條互相垂直的切線的交點(diǎn)的軌跡是以該橢圓中心為圓心的圓,這個(gè)圓被稱為該橢圓的蒙日?qǐng)A.若橢圓:SKIPIF1<0(SKIPIF1<0)的蒙日?qǐng)A為SKIPIF1<0,則橢圓Γ的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.定義:圓錐曲線SKIPIF1<0的兩條相互垂直的切線的交點(diǎn)SKIPIF1<0的軌跡是以坐標(biāo)原點(diǎn)為圓心,SKIPIF1<0為半徑的圓,這個(gè)圓稱為蒙日?qǐng)A.已知橢圓SKIPIF1<0的方程為SKIPIF1<0,SKIPIF1<0是直線SKIPIF1<0上的一點(diǎn),過點(diǎn)SKIPIF1<0作橢圓SKIPIF1<0的兩條切線與橢圓相切于SKIPIF1<0、SKIPIF1<0兩點(diǎn),SKIPIF1<0是坐標(biāo)原點(diǎn),連接SKIPIF1<0,當(dāng)SKIPIF1<0為直角時(shí),則SKIPIF1<0(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<05.畫法幾何的創(chuàng)始人——法國(guó)數(shù)學(xué)家加斯帕爾·蒙日發(fā)現(xiàn):過橢圓外一點(diǎn)作橢圓的兩條互相垂直的切線,那么這一點(diǎn)的軌跡是以橢圓中心為圓心的圓,這個(gè)圓被稱為該橢圓的蒙日?qǐng)A.已知橢圓SKIPIF1<0的蒙日?qǐng)A為圓SKIPIF1<0,若圓SKIPIF1<0不透明,則一束光線從點(diǎn)SKIPIF1<0出發(fā),經(jīng)SKIPIF1<0軸反射到圓SKIPIF1<0上的最大路程是(
)A.2 B.4 C.5 D.86.已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,離心率為SKIPIF1<0,其蒙日?qǐng)A方程為SKIPIF1<0,M為蒙日?qǐng)A上的一個(gè)動(dòng)點(diǎn),過點(diǎn)SKIPIF1<0作橢圓SKIPIF1<0的兩條切線,與蒙日?qǐng)A分別交于P,Q兩點(diǎn),若SKIPIF1<0面積的最大值為36,則橢圓SKIPIF1<0的長(zhǎng)軸長(zhǎng)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.加斯帕爾-蒙日是1819世紀(jì)法國(guó)著名的幾何學(xué)家.如圖,他在研究圓錐曲線時(shí)發(fā)現(xiàn):橢圓的任意兩條互相垂直的切線的交點(diǎn)都在同一個(gè)圓上,其圓心是橢圓的中心,這個(gè)圓被稱為“蒙日?qǐng)A”.若長(zhǎng)方形SKIPIF1<0的四邊均與橢圓SKIPIF1<0相切,則下列說(shuō)法錯(cuò)誤的是(
)
A.橢圓SKIPIF1<0的離心率為SKIPIF1<0 B.橢圓SKIPIF1<0的蒙日?qǐng)A方程為SKIPIF1<0C.若SKIPIF1<0為正方形,則SKIPIF1<0的邊長(zhǎng)為SKIPIF1<0 D.長(zhǎng)方形SKIPIF1<0的面積的最大值為188.研究發(fā)現(xiàn)橢圓的任意兩條互相垂直的切線的交點(diǎn)都在同一個(gè)圓上,這個(gè)圓叫做橢圓的蒙日?qǐng)A.設(shè)橢圓SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為橢圓SKIPIF1<0上的任意一點(diǎn),SKIPIF1<0為橢圓SKIPIF1<0的蒙日?qǐng)A的半徑.若SKIPIF1<0的最小值為SKIPIF1<0,則橢圓SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.法國(guó)數(shù)學(xué)家加斯帕·蒙日被稱為“畫法幾何創(chuàng)始人”“微分幾何之父”.他發(fā)現(xiàn)與橢圓相切的兩條互相垂直的切線的交點(diǎn)的軌跡是以該橢圓中心為圓心的圓,這個(gè)圓稱為該橢圓的蒙日?qǐng)A.若橢圓SKIPIF1<0:SKIPIF1<0的蒙日?qǐng)A為C:SKIPIF1<0,過C上的動(dòng)點(diǎn)M作SKIPIF1<0的兩條切線,分別與C交于P,Q兩點(diǎn),直線PQ交SKIPIF1<0于A,B兩點(diǎn),則下列結(jié)論不正確的是(
)A.橢圓SKIPIF1<0的離心率為SKIPIF1<0B.SKIPIF1<0面積的最大值為SKIPIF1<0C.M到SKIPIF1<0的左焦點(diǎn)的距離的最小值為SKIPIF1<0D.若動(dòng)點(diǎn)D在SKIPIF1<0上,將直線DA,DB的斜率分別記為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0二、多選題10.加斯帕爾·蒙日(如圖甲)是18~19世紀(jì)法國(guó)著名的幾何學(xué)家,他在研究圓錐曲線時(shí)發(fā)現(xiàn):橢圓的任意兩條互相垂直的切線的交點(diǎn)都在同一個(gè)圓上,其圓心是橢圓的中心,這個(gè)圓被稱為“蒙日?qǐng)A”(圖乙).已知長(zhǎng)方形R的四邊均與橢圓SKIPIF1<0相切,則下列說(shuō)法正確的是(
)A.橢圓C的離心率為SKIPIF1<0 B.橢圓C的蒙日?qǐng)A方程為SKIPIF1<0C.橢圓C的蒙日?qǐng)A方程為SKIPIF1<0 D.長(zhǎng)方形R的面積最大值為1811.法國(guó)數(shù)學(xué)家加斯帕·蒙日被稱為“畫法幾何創(chuàng)始人”、“微分幾何之父”.他發(fā)現(xiàn)與橢圓相切的兩條互相垂直的切線的交點(diǎn)的軌跡是以該橢圓中心為圓心的圓,這個(gè)圓稱為該橢圓的蒙日?qǐng)A.若橢圓SKIPIF1<0的蒙日?qǐng)A為SKIPIF1<0,過SKIPIF1<0上的動(dòng)點(diǎn)SKIPIF1<0作SKIPIF1<0的兩條切線,分別與SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),直線SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,SKIPIF1<0兩點(diǎn),則(
)A.橢圓SKIPIF1<0的離心率為SKIPIF1<0B.SKIPIF1<0面積的最大值為SKIPIF1<0C.SKIPIF1<0到SKIPIF1<0的左焦點(diǎn)的距離的最小值為SKIPIF1<0D.若動(dòng)點(diǎn)SKIPIF1<0在SKIPIF1<0上,將直線SKIPIF1<0,SKIPIF1<0的斜率分別記為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<012.在橢圓SKIPIF1<0中,其所有外切矩形的頂點(diǎn)在一個(gè)定圓SKIPIF1<0上,稱此圓為該橢圓的蒙日?qǐng)A.該圓由法國(guó)數(shù)學(xué)家SKIPIF1<0最新發(fā)現(xiàn).若橢圓SKIPIF1<0,則下列說(shuō)法中正確的有(
)A.橢圓SKIPIF1<0外切矩形面積的最大值為SKIPIF1<0B.點(diǎn)SKIPIF1<0為蒙日?qǐng)ASKIPIF1<0上任意一點(diǎn),點(diǎn)SKIPIF1<0,當(dāng)SKIPIF1<0最大值時(shí)SKIPIF1<0C.過橢圓SKIPIF1<0的蒙日?qǐng)A上一點(diǎn)SKIPIF1<0,作橢圓的一條切線,與蒙日?qǐng)A交于點(diǎn)SKIPIF1<0,若SKIPIF1<0存在,則SKIPIF1<0為定值SKIPIF1<0D.若橢圓SKIPIF1<0的左右焦點(diǎn)分別為SKIPIF1<0,過橢圓SKIPIF1<0上一點(diǎn)SKIPIF1<0和原點(diǎn)作直線SKIPIF1<0與蒙日?qǐng)A相交于SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<013.)畫法幾何的創(chuàng)始人——法國(guó)數(shù)學(xué)家加斯帕爾·蒙日發(fā)現(xiàn):與橢圓相切的兩條垂直切線的交點(diǎn)的軌跡是以橢圓中心為圓心的圓,我們通常把這個(gè)圓稱為該橢圓的蒙日?qǐng)A.已
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新型城鎮(zhèn)化發(fā)展戰(zhàn)略規(guī)劃合同
- 二零二四徐匯區(qū)汽車吊車租賃工程合同范本6篇
- 二零二五版電梯安全防護(hù)設(shè)施購(gòu)銷合同4篇
- 2025年度廣告代理服務(wù)合同范本(二零二五年度)
- 二零二五年度電商用戶隱私保護(hù)與數(shù)據(jù)安全合同7篇
- 2025年度租賃房屋裝修合同下載版
- 2025年度戶外公共空間花卉綠植布置合同
- 二零二四年度企業(yè)內(nèi)部控制與風(fēng)險(xiǎn)管理咨詢合同9篇
- 2025年度跨境電商平臺(tái)股權(quán)重組與運(yùn)營(yíng)管理合同
- 2025年度化妝品產(chǎn)品售后服務(wù)及客戶關(guān)系維護(hù)合同
- 2025年中國(guó)南方航空股份有限公司招聘筆試參考題庫(kù)含答案解析
- 商務(wù)部發(fā)布《中國(guó)再生資源回收行業(yè)發(fā)展報(bào)告(2024)》
- 2025年福建新華發(fā)行(集團(tuán))限責(zé)任公司校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 江蘇省駕??荚嚳颇恳豢荚囶}庫(kù)
- 四川省成都市青羊區(qū)成都市石室聯(lián)合中學(xué)2023-2024學(xué)年七上期末數(shù)學(xué)試題(解析版)
- 咨詢公司績(jī)效工資分配實(shí)施方案
- 2025新人教版英語(yǔ)七年級(jí)下單詞表
- 中華護(hù)理學(xué)會(huì)團(tuán)體標(biāo)準(zhǔn)-氣管切開非機(jī)械通氣患者氣道護(hù)理
- 未成年入職免責(zé)協(xié)議書
- 光伏電站巡檢專項(xiàng)方案
- 肺栓塞的護(hù)理查房完整版
評(píng)論
0/150
提交評(píng)論