![2024-2025學(xué)年河南省信陽(yáng)市示范名校學(xué)業(yè)水平模擬考試數(shù)學(xué)試題含解析_第1頁(yè)](http://file4.renrendoc.com/view2/M00/27/38/wKhkFma8H3GASASWAAINRxJaVZQ699.jpg)
![2024-2025學(xué)年河南省信陽(yáng)市示范名校學(xué)業(yè)水平模擬考試數(shù)學(xué)試題含解析_第2頁(yè)](http://file4.renrendoc.com/view2/M00/27/38/wKhkFma8H3GASASWAAINRxJaVZQ6992.jpg)
![2024-2025學(xué)年河南省信陽(yáng)市示范名校學(xué)業(yè)水平模擬考試數(shù)學(xué)試題含解析_第3頁(yè)](http://file4.renrendoc.com/view2/M00/27/38/wKhkFma8H3GASASWAAINRxJaVZQ6993.jpg)
![2024-2025學(xué)年河南省信陽(yáng)市示范名校學(xué)業(yè)水平模擬考試數(shù)學(xué)試題含解析_第4頁(yè)](http://file4.renrendoc.com/view2/M00/27/38/wKhkFma8H3GASASWAAINRxJaVZQ6994.jpg)
![2024-2025學(xué)年河南省信陽(yáng)市示范名校學(xué)業(yè)水平模擬考試數(shù)學(xué)試題含解析_第5頁(yè)](http://file4.renrendoc.com/view2/M00/27/38/wKhkFma8H3GASASWAAINRxJaVZQ6995.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024-2025學(xué)年河南省信陽(yáng)市示范名校學(xué)業(yè)水平模擬考試數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)(是虛數(shù)單位),則()A. B.1 C.2 D.2.蒙特卡洛算法是以概率和統(tǒng)計(jì)的理論、方法為基礎(chǔ)的一種計(jì)算方法,將所求解的問(wèn)題同一定的概率模型相聯(lián)系;用均勻投點(diǎn)實(shí)現(xiàn)統(tǒng)計(jì)模擬和抽樣,以獲得問(wèn)題的近似解,故又稱統(tǒng)計(jì)模擬法或統(tǒng)計(jì)實(shí)驗(yàn)法.現(xiàn)向一邊長(zhǎng)為的正方形模型內(nèi)均勻投點(diǎn),落入陰影部分的概率為,則圓周率()A. B.C. D.3.某地區(qū)高考改革,實(shí)行“3+2+1”模式,即“3”指語(yǔ)文、數(shù)學(xué)、外語(yǔ)三門必考科目,“1”指在物理、歷史兩門科目中必選一門,“2”指在化學(xué)、生物、政治、地理以及除了必選一門以外的歷史或物理這五門學(xué)科中任意選擇兩門學(xué)科,則一名學(xué)生的不同選科組合有()A.8種 B.12種 C.16種 D.20種4.已知,,則()A. B. C.3 D.45.已知某幾何體的三視圖如圖所示,其中正視圖與側(cè)視圖是全等的直角三角形,則該幾何體的各個(gè)面中,最大面的面積為()A.2 B.5 C. D.6.設(shè)為虛數(shù)單位,為復(fù)數(shù),若為實(shí)數(shù),則()A. B. C. D.7.已知數(shù)列的通項(xiàng)公式為,將這個(gè)數(shù)列中的項(xiàng)擺放成如圖所示的數(shù)陣.記為數(shù)陣從左至右的列,從上到下的行共個(gè)數(shù)的和,則數(shù)列的前2020項(xiàng)和為()A. B. C. D.8.“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分又不必要條件9.相傳黃帝時(shí)代,在制定樂(lè)律時(shí),用“三分損益”的方法得到不同的竹管,吹出不同的音調(diào).如圖的程序是與“三分損益”結(jié)合的計(jì)算過(guò)程,若輸入的的值為1,輸出的的值為()A. B. C. D.10.設(shè)數(shù)列是等差數(shù)列,,.則這個(gè)數(shù)列的前7項(xiàng)和等于()A.12 B.21 C.24 D.3611.已知角的終邊與單位圓交于點(diǎn),則等于()A. B. C. D.12.南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,但是逐項(xiàng)差數(shù)之差或者高次差成等差數(shù)列對(duì)這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前7項(xiàng)分別為1,4,8,14,23,36,54,則該數(shù)列的第19項(xiàng)為()(注:)A.1624 B.1024 C.1198 D.1560二、填空題:本題共4小題,每小題5分,共20分。13.正四面體的各個(gè)點(diǎn)在平面同側(cè),各點(diǎn)到平面的距離分別為1,2,3,4,則正四面體的棱長(zhǎng)為__________.14.已知兩動(dòng)點(diǎn)在橢圓上,動(dòng)點(diǎn)在直線上,若恒為銳角,則橢圓的離心率的取值范圍為__________.15.在的二項(xiàng)展開式中,所有項(xiàng)的系數(shù)的和為________16.函數(shù)在區(qū)間內(nèi)有且僅有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)記無(wú)窮數(shù)列的前項(xiàng)中最大值為,最小值為,令,則稱是“極差數(shù)列”.(1)若,求的前項(xiàng)和;(2)證明:的“極差數(shù)列”仍是;(3)求證:若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.18.(12分)(選修4-4:坐標(biāo)系與參數(shù)方程)在平面直角坐標(biāo)系,已知曲線(為參數(shù)),在以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)求曲線的普通方程和直線的直角坐標(biāo)方程;(2)過(guò)點(diǎn)且與直線平行的直線交于,兩點(diǎn),求點(diǎn)到,的距離之積.19.(12分)如圖,在等腰梯形中,AD∥BC,,,,,分別為,,的中點(diǎn),以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)位置(平面).(1)若為直線上任意一點(diǎn),證明:MH∥平面;(2)若直線與直線所成角為,求二面角的余弦值.20.(12分)已知函數(shù).(1)解不等式:;(2)求證:.21.(12分)已知非零實(shí)數(shù)滿足.(1)求證:;(2)是否存在實(shí)數(shù),使得恒成立?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由22.(10分)已知函數(shù)(1)當(dāng)時(shí),證明,在恒成立;(2)若在處取得極大值,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
先利用復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則求出,即可根據(jù)復(fù)數(shù)的模計(jì)算公式求出.【詳解】∵,∴.故選:A.本題主要考查復(fù)數(shù)代數(shù)形式的四則運(yùn)算法則的應(yīng)用,以及復(fù)數(shù)的模計(jì)算公式的應(yīng)用,屬于容易題.2.A【解析】
計(jì)算出黑色部分的面積與總面積的比,即可得解.【詳解】由,∴.故選:A本題考查了面積型幾何概型的概率的計(jì)算,屬于基礎(chǔ)題.3.C【解析】
分兩類進(jìn)行討論:物理和歷史只選一門;物理和歷史都選,分別求出兩種情況對(duì)應(yīng)的組合數(shù),即可求出結(jié)果.【詳解】若一名學(xué)生只選物理和歷史中的一門,則有種組合;若一名學(xué)生物理和歷史都選,則有種組合;因此共有種組合.故選C本題主要考查兩個(gè)計(jì)數(shù)原理,熟記其計(jì)數(shù)原理的概念,即可求出結(jié)果,屬于常考題型.4.A【解析】
根據(jù)復(fù)數(shù)相等的特征,求出和,再利用復(fù)數(shù)的模公式,即可得出結(jié)果.【詳解】因?yàn)椋?,解得則.故選:A.本題考查相等復(fù)數(shù)的特征和復(fù)數(shù)的模,屬于基礎(chǔ)題.5.D【解析】
根據(jù)三視圖還原出幾何體,找到最大面,再求面積.【詳解】由三視圖可知,該幾何體是一個(gè)三棱錐,如圖所示,將其放在一個(gè)長(zhǎng)方體中,并記為三棱錐.,,,故最大面的面積為.選D.本題主要考查三視圖的識(shí)別,復(fù)雜的三視圖還原為幾何體時(shí),一般借助長(zhǎng)方體來(lái)實(shí)現(xiàn).6.B【解析】
可設(shè),將化簡(jiǎn),得到,由復(fù)數(shù)為實(shí)數(shù),可得,解方程即可求解【詳解】設(shè),則.由題意有,所以.故選:B本題考查復(fù)數(shù)的模長(zhǎng)、除法運(yùn)算,由復(fù)數(shù)的類型求解對(duì)應(yīng)參數(shù),屬于基礎(chǔ)題7.D【解析】
由題意,設(shè)每一行的和為,可得,繼而可求解,表示,裂項(xiàng)相消即可求解.【詳解】由題意,設(shè)每一行的和為故因此:故故選:D本題考查了等差數(shù)列型數(shù)陣的求和,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.8.A【解析】
首先利用二倍角正切公式由,求出,再根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:∵,∴可解得或,∴“”是“”的充分不必要條件.故選:A本題主要考查充分條件和必要條件的判斷,二倍角正切公式的應(yīng)用是解決本題的關(guān)鍵,屬于基礎(chǔ)題.9.B【解析】
根據(jù)循環(huán)語(yǔ)句,輸入,執(zhí)行循環(huán)語(yǔ)句即可計(jì)算出結(jié)果.【詳解】輸入,由題意執(zhí)行循環(huán)結(jié)構(gòu)程序框圖,可得:第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,滿足判斷條件;輸出結(jié)果.故選:本題考查了循環(huán)語(yǔ)句的程序框圖,求輸出的結(jié)果,解答此類題目時(shí)結(jié)合循環(huán)的條件進(jìn)行計(jì)算,需要注意跳出循環(huán)的判定語(yǔ)句,本題較為基礎(chǔ).10.B【解析】
根據(jù)等差數(shù)列的性質(zhì)可得,由等差數(shù)列求和公式可得結(jié)果.【詳解】因?yàn)閿?shù)列是等差數(shù)列,,所以,即,又,所以,,故故選:B本題主要考查了等差數(shù)列的通項(xiàng)公式,性質(zhì),等差數(shù)列的和,屬于中檔題.11.B【解析】
先由三角函數(shù)的定義求出,再由二倍角公式可求.【詳解】解:角的終邊與單位圓交于點(diǎn),,故選:B考查三角函數(shù)的定義和二倍角公式,是基礎(chǔ)題.12.B【解析】
根據(jù)高階等差數(shù)列的定義,求得等差數(shù)列的通項(xiàng)公式和前項(xiàng)和,利用累加法求得數(shù)列的通項(xiàng)公式,進(jìn)而求得.【詳解】依題意:1,4,8,14,23,36,54,……兩兩作差得:3,4,6,9,13,18,……兩兩作差得:1,2,3,4,5,……設(shè)該數(shù)列為,令,設(shè)的前項(xiàng)和為,又令,設(shè)的前項(xiàng)和為.易,,進(jìn)而得,所以,則,所以,所以.故選:B本小題主要考查新定義數(shù)列的理解和運(yùn)用,考查累加法求數(shù)列的通項(xiàng)公式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
不妨設(shè)點(diǎn)A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個(gè)單位,與正四面體相交,過(guò)點(diǎn)D,與AB,AC分別相交于點(diǎn)E,F(xiàn),根據(jù)題意F為中點(diǎn),E為AB的三等分點(diǎn)(靠近點(diǎn)A),設(shè)棱長(zhǎng)為a,求得,再用余弦定理求得:,從而求得,再根據(jù)頂點(diǎn)A到面EDF的距離為,得到,然后利用等體積法求解,【詳解】不妨設(shè)點(diǎn)A,D,C,B到面的距離分別為1,2,3,4,平面向下平移兩個(gè)單位,與正四面體相交,過(guò)點(diǎn)D,與AB,AC分別相交于點(diǎn)E,F(xiàn),如圖所示:由題意得:F為中點(diǎn),E為AB的三等分點(diǎn)(靠近點(diǎn)A),設(shè)棱長(zhǎng)為a,,頂點(diǎn)D到面ABC的距離為所以,由余弦定理得:,所以,所以,又頂點(diǎn)A到面EDF的距離為,所以,因?yàn)?,所以,解得,故答案為:本題主要考查幾何體的切割問(wèn)題以及等體積法的應(yīng)用,還考查了轉(zhuǎn)化化歸的思想和空間想象,運(yùn)算求解的能力,屬于難題,14.【解析】
根據(jù)題意可知圓上任意一點(diǎn)向橢圓所引的兩條切線互相垂直,恒為銳角,只需直線與圓相離,從而可得,解不等式,再利用離心率即可求解.【詳解】根據(jù)題意可得,圓上任意一點(diǎn)向橢圓所引的兩條切線互相垂直,因此當(dāng)直線與圓相離時(shí),恒為銳角,故,解得從而離心率.故答案為:本題主要考查了橢圓的幾何性質(zhì),考查了邏輯分析能力,屬于中檔題.15.1【解析】
設(shè),令,的值即為所有項(xiàng)的系數(shù)之和。【詳解】設(shè),令,所有項(xiàng)的系數(shù)的和為。本題主要考查二項(xiàng)式展開式所有項(xiàng)的系數(shù)的和的求法─賦值法。一般地,對(duì)于,展開式各項(xiàng)系數(shù)之和為,注意與“二項(xiàng)式系數(shù)之和”區(qū)分。16.【解析】
對(duì)函數(shù)零點(diǎn)問(wèn)題等價(jià)轉(zhuǎn)化,分離參數(shù)討論交點(diǎn)個(gè)數(shù),數(shù)形結(jié)合求解.【詳解】由題:函數(shù)在區(qū)間內(nèi)有且僅有兩個(gè)零點(diǎn),,等價(jià)于函數(shù)恰有兩個(gè)公共點(diǎn),作出大致圖象:要有兩個(gè)交點(diǎn),即,所以.故答案為:此題考查函數(shù)零點(diǎn)問(wèn)題,根據(jù)函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍,關(guān)鍵在于對(duì)函數(shù)零點(diǎn)問(wèn)題恰當(dāng)變形,等價(jià)轉(zhuǎn)化,數(shù)形結(jié)合求解.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)證明見解析(3)證明見解析【解析】
(1)由是遞增數(shù)列,得,由此能求出的前項(xiàng)和.(2)推導(dǎo)出,,由此能證明的“極差數(shù)列”仍是.(3)證當(dāng)數(shù)列是等差數(shù)列時(shí),設(shè)其公差為,,是一個(gè)單調(diào)遞增數(shù)列,從而,,由,,,分類討論,能證明若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.【詳解】(1)解:∵無(wú)窮數(shù)列的前項(xiàng)中最大值為,最小值為,,,是遞增數(shù)列,∴,∴的前項(xiàng)和.(2)證明:∵,,∴,∴,∵,∴,∴的“極差數(shù)列”仍是(3)證明:當(dāng)數(shù)列是等差數(shù)列時(shí),設(shè)其公差為,,根據(jù),的定義,得:,,且兩個(gè)不等式中至少有一個(gè)取等號(hào),當(dāng)時(shí),必有,∴,∴是一個(gè)單調(diào)遞增數(shù)列,∴,,∴,∴,∴是等差數(shù)列,當(dāng)時(shí),則必有,∴,∴是一個(gè)單調(diào)遞減數(shù)列,∴,,∴,∴.∴是等差數(shù)列,當(dāng)時(shí),,∵,中必有一個(gè)為0,根據(jù)上式,一個(gè)為0,為一個(gè)必為0,∴,,∴數(shù)列是常數(shù)數(shù)列,則數(shù)列是等差數(shù)列.綜上,若數(shù)列是等差數(shù)列,則數(shù)列也是等差數(shù)列.本小題主要考查新定義數(shù)列的理解和運(yùn)用,考查等差數(shù)列的證明,考查數(shù)列的單調(diào)性,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.18.(1)曲線:,直線的直角坐標(biāo)方程;(2)1.【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線化為普通方程,再根據(jù)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)根據(jù)題意設(shè)直線參數(shù)方程,代入C方程,利用參數(shù)幾何意義以及韋達(dá)定理得點(diǎn)到,的距離之積試題解析:(1)曲線化為普通方程為:,由,得,所以直線的直角坐標(biāo)方程為.(2)直線的參數(shù)方程為(為參數(shù)),代入化簡(jiǎn)得:,設(shè)兩點(diǎn)所對(duì)應(yīng)的參數(shù)分別為,則,.19.(1)見解析(2)【解析】
(1)根據(jù)中位線證明平面平面,即可證明MH∥平面;(2)以,,為,,軸建立空間直角坐標(biāo)系,找到點(diǎn)的坐標(biāo)代入公式即可計(jì)算二面角的余弦值.【詳解】(1)證明:連接,∵,,分別為,,的中點(diǎn),∴,又∵平面,平面,∴平面,同理,平面,∵平面,平面,,∴平面平面,∵平面,∴平面.(2)連接,在和中,由余弦定理可得,,由與互補(bǔ),,,可解得,于是,∴,,∵,直線與直線所成角為,∴,又,∴,即,∴平面,∴平面平面,∵為中點(diǎn),,∴平面,如圖所示,分別以,,為,,軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,∴,即.令,則,,可得平面的一個(gè)法向量為.又平面的一個(gè)法向量為,∴,∴二面角的余弦值為.此題考查線面平行,建系通過(guò)坐標(biāo)求二面角等知識(shí)點(diǎn),屬于一般性題目.20.(1);(2)見解析.【解析】
(1)代入得,分類討論,解不等式即可;(2)利用絕對(duì)值不等式得性質(zhì),,,比較大小即可.【詳解】(1)由于,于是原不等式化為,若,則,解得;若,則,解得;若,則,解得.綜上所述,不等式解集為.(2)由已知條件,對(duì)于,可得.又,由于,所以.又由于,于是.所以.本題考查了絕對(duì)值不等式得求解和恒成立問(wèn)題,考查了學(xué)生分類討論,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算能力,屬于中檔題.21.(1)見解析(2)存在,【解析】
(1)利用作差法即可證出.(2)將不等式通分化簡(jiǎn)可得,討論或,分離參數(shù),利用基本不等式即可求解.【詳解】又即即①當(dāng)時(shí),即恒成立(當(dāng)且僅當(dāng)時(shí)取等號(hào)),故②當(dāng)時(shí)恒成立(當(dāng)且僅當(dāng)時(shí)取等號(hào)),故綜上,本題考查了作差法證明不等式、基本不等式求最值、考查了分類討論的思想,屬于基礎(chǔ)題.22.(1)證明見解析(2)【解析】
(
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 智慧交通系統(tǒng)建設(shè)可行性分析報(bào)告
- 2022-2027年中國(guó)無(wú)店鋪零售行業(yè)發(fā)展監(jiān)測(cè)及投資戰(zhàn)略研究報(bào)告
- 2024-2030年中國(guó)飄逸杯行業(yè)市場(chǎng)調(diào)查研究及投資潛力預(yù)測(cè)報(bào)告
- 竹制品生產(chǎn)項(xiàng)目可行性研究報(bào)告建議書
- 山石盆景行業(yè)深度研究報(bào)告
- 綠色建筑設(shè)計(jì)自評(píng)估報(bào)告參考樣式
- 年產(chǎn)xx萬(wàn)立方米建筑垃圾再生磚項(xiàng)目可行性研究報(bào)告(立項(xiàng)申請(qǐng))
- 2021-2026年中國(guó)兒童厭食癥用藥市場(chǎng)調(diào)查研究及行業(yè)投資潛力預(yù)測(cè)報(bào)告
- 磷化鎵晶體(GaP)行業(yè)深度研究報(bào)告
- 客服試用期轉(zhuǎn)正工作總結(jié)
- 新部編版小學(xué)六年級(jí)下冊(cè)語(yǔ)文第二單元測(cè)試卷及答案
- 5《這些事我來(lái)做》(說(shuō)課稿)-部編版道德與法治四年級(jí)上冊(cè)
- 2025年福建福州市倉(cāng)山區(qū)國(guó)有投資發(fā)展集團(tuán)有限公司招聘筆試參考題庫(kù)附帶答案詳解
- 2025年廣東省深圳法院招聘書記員招聘144人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年人教版新教材數(shù)學(xué)一年級(jí)下冊(cè)教學(xué)計(jì)劃(含進(jìn)度表)
- 2025長(zhǎng)江航道工程局招聘101人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年春西師版一年級(jí)下冊(cè)數(shù)學(xué)教學(xué)計(jì)劃
- 2025年國(guó)新國(guó)際投資有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年八省聯(lián)考四川高考生物試卷真題答案詳解(精校打印)
- 《供電營(yíng)業(yè)規(guī)則》
- 企業(yè)員工退休管理規(guī)章制度(3篇)
評(píng)論
0/150
提交評(píng)論