大學(xué)物理習(xí)題集_第1頁(yè)
大學(xué)物理習(xí)題集_第2頁(yè)
大學(xué)物理習(xí)題集_第3頁(yè)
大學(xué)物理習(xí)題集_第4頁(yè)
大學(xué)物理習(xí)題集_第5頁(yè)
已閱讀5頁(yè),還剩36頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

練習(xí)一質(zhì)點(diǎn)運(yùn)動(dòng)學(xué)

一.選擇題

1.一運(yùn)動(dòng)質(zhì)點(diǎn)在某瞬時(shí)位于矢徑?(x,y)的端點(diǎn)處,其速度大小為:

(A)—;(B)—;(C)如1;(D)J隹[+俘丫.

dtdtdt認(rèn)力)\dt)

2.質(zhì)點(diǎn)在),軸上運(yùn)動(dòng),運(yùn)動(dòng)方程為)=4尸-2冷則質(zhì)點(diǎn)返回原點(diǎn)時(shí)的速度和加速度分別為:

(A)8m/s,16m/s2.(B)-8m/s,-16m/s2.

(C)-8m/s,16m/s2.(D)8m/s,-16m/s2.

3.質(zhì)點(diǎn)沿xoy平面作曲線運(yùn)動(dòng),其運(yùn)動(dòng)方程為.則質(zhì)點(diǎn)位置矢量與速度矢

量恰好垂直的時(shí)刻為

(A)0秒和3.16秒.(B)1.78秒.

(C)1.78秒和3秒.(D)0秒和3秒.

4.質(zhì)點(diǎn)沿半徑R=1m的圓周運(yùn)動(dòng),某時(shí)刻角速度6y=lrad/s,角加速度a=lrad/s2,則質(zhì)點(diǎn)速度

和加速度的大小為

(A)lm/s,lm/s2.(B)1m/s,2m/s2.

(C)1m/s,A/2m/s2.(D)2m/s,A/2m/s2.

5.一拋射體的初速度為如拋射角為“拋射點(diǎn)的法向加速度,最高點(diǎn)的切向加速度以及最

高點(diǎn)的曲率半徑分別為

(A)geos。,0,%2cos2£/g.(B)geos。,gsinO:0.

222

(C)gsin。,0,vo/^.(D)g,g,v0sin^/^.

二.填空題

1.一小球沿斜面向上運(yùn)動(dòng),其運(yùn)動(dòng)方程為5=5+4/-?(SI),則小球運(yùn)動(dòng)到最高點(diǎn)的時(shí)刻為t=

秒.

2.一質(zhì)點(diǎn)沿X軸運(yùn)動(dòng),v=1+3P(SI),若Z=0時(shí),質(zhì)點(diǎn)位于原點(diǎn).則質(zhì)點(diǎn)的加速度e

(SI);質(zhì)點(diǎn)的運(yùn)動(dòng)方程為產(chǎn)(SI).

3.己知質(zhì)點(diǎn)的運(yùn)動(dòng)方程為予=2戶cos萬(wàn)斤(SI),則其速度無(wú)

加速度,=;當(dāng)仁1秒時(shí),其切向加速度。尸;法向加速

度々產(chǎn)?

三.計(jì)算題

1.已知一質(zhì)點(diǎn)作直線運(yùn)動(dòng),其加速度為a=4+3《m/s2),開(kāi)始運(yùn)動(dòng)時(shí),x=5m,v=0,求質(zhì)點(diǎn)

在r=10s時(shí)的速度和位置.

2.一質(zhì)點(diǎn)沿Ox軸作直線運(yùn)動(dòng),加速度為。=-kx,k為一正的常量,假定質(zhì)點(diǎn)在沏的速

度是玲,試求質(zhì)點(diǎn)速度的大小u與坐標(biāo)x的函數(shù)關(guān)系.

3.飛輪半徑為0.4m,自靜止啟動(dòng),其角加速為au-rad/sz,求t=2s時(shí)邊緣上各點(diǎn)的速度,

法向加速度、切向加速度和合加速度.

練習(xí)二質(zhì)點(diǎn)動(dòng)力學(xué)

一.選擇題

1.如圖2.1(八)所示,〃人>/加8時(shí),算出〃切向右的加速度為。,今去掉〃"而代之以拉力T=

機(jī)略如圖3.1(B)所示,算出師的加速度必則

(A)a>ar.

(B)a=a1.

(C)a<a'.

(D)無(wú)法判斷.

2.一質(zhì)量為m=0.5kg的質(zhì)點(diǎn)做

平面運(yùn)動(dòng),其運(yùn)動(dòng)方程運(yùn)動(dòng)為x=2

^(SIXy^+r+KSI),則質(zhì)點(diǎn)所受的圖2.1

合力大小為

(A)1N.(B)GN.(C)6N.(D)>/7N.

3.對(duì)功的概念有以下幾種說(shuō)法:

(I)保守力作正功時(shí),系統(tǒng)內(nèi)相應(yīng)的勢(shì)能增加。

(2)質(zhì)點(diǎn)運(yùn)動(dòng)經(jīng)一閉合路徑,保守力對(duì)質(zhì)點(diǎn)作的功為零。

(3)作用力和反作用力大小相等、方向相反,所以兩者所作的

功的代數(shù)和必然為零。

在上述說(shuō)法中:

(A)(1)、(2)是正確的;(B)(2)、(3)是正確的;

(C)只有(2)是正確的;(D)只有(3)是正確的。

4.對(duì)于一個(gè)物體系統(tǒng)來(lái)說(shuō),在下列條件中,那種情況下系統(tǒng)

的機(jī)械能守恒?

(A)合外力為0:(B)合外力不作功;

(C)外力和非保守內(nèi)力都不作功;(D)外力和保守力都不作功。

5.一個(gè)質(zhì)點(diǎn)同時(shí)在幾個(gè)力作用下的位移為△7=41-5]+6互(SI),其中一個(gè)力為恒力

F=-37-57+9^(SI),則此力在該位移過(guò)程中所作的功為

(A)67J(B)91J(C)17J(D)-67J.

二.填空題

1.如圖2.2所示,一根繩長(zhǎng)為/系著一質(zhì)量為根的小球,懸掛

在天花板上,小球在水平面內(nèi)作勻速圓周運(yùn)動(dòng),當(dāng)擺線與豎直方向的

夾角為。時(shí),則小球的轉(zhuǎn)動(dòng)周期是.

2.如圖2.3所示,一水平圓盤,半徑為,,邊緣放置一質(zhì)量為〃z的

物體A,它與盤的靜摩擦系數(shù)為〃,圓盤繞中心軸。0,轉(zhuǎn)動(dòng),當(dāng)其角

速度/小于或等于時(shí),物A不致于飛出.

2

3.己知地球半徑為R,質(zhì)量為M現(xiàn)有一質(zhì)量為m的物體處在離地面高度2R處,以地球和

物體為系統(tǒng),如取地面的引力勢(shì)能為零,則系統(tǒng)的引力勢(shì)能為:如取無(wú)窮遠(yuǎn)處的

引力勢(shì)能為零,則系統(tǒng)的引力勢(shì)能為.

三.計(jì)算題

1.一顆子彈在槍筒里前進(jìn)時(shí)所受的合力大小為

F=400-4xl0-r(SI)

3

子彈從槍口射出時(shí)的速率為300m?sL假設(shè)子彈離開(kāi)槍口時(shí)合力剛好為零,求

(1)子彈走完槍筒全長(zhǎng)所用的時(shí)間;

(2)子彈在槍筒中所受力的沖量;

(3)子彈的質(zhì)量。

2.質(zhì)量為根的子彈以速度w水平射入沙土中,設(shè)子彈所受阻力與速度成正比,比例系數(shù)為七

忽略子彈的重力,求

(1)子彈射入沙土后,速度隨時(shí)間變化的函數(shù)關(guān)系式;

(2)子彈射入沙土的最大深度.

練習(xí)三剛體的定軸轉(zhuǎn)動(dòng)

一.選擇題

1.在定軸轉(zhuǎn)動(dòng)中,如果合外力矩的方向與角速度的方向一致,則以下說(shuō)法正確的是:

(A)合力矩增大時(shí),物體角速度一定增大;

(B)合力矩減小時(shí),物體角速度一定減??;

(C)合力矩減小時(shí),物體角加速度不一定變小;

(D)合力矩增大時(shí),物體角加速度不一定增大.

2.幾個(gè)力同時(shí)作用在一個(gè)具有固定轉(zhuǎn)軸的剛體上,如果這幾個(gè)力的矢量和為零,則此剛體

(A)必然不會(huì)轉(zhuǎn)動(dòng).(B)轉(zhuǎn)速必然不變.

(C)轉(zhuǎn)速必然改變.(D)轉(zhuǎn)速可能不變,也可能改變.

3.如圖3.1所示,一繩子長(zhǎng)/,質(zhì)量為m的單擺和一

長(zhǎng)度為/,質(zhì)量為九能繞水平軸轉(zhuǎn)動(dòng)的勻質(zhì)細(xì)棒,現(xiàn)將擺

球和細(xì)棒同時(shí)從與鉛直線成照的位置靜止釋放.當(dāng)二

者運(yùn)動(dòng)到豎直位置時(shí),擺球和細(xì)棒的角速度應(yīng)滿足

(A)一定大于在.

(B)劭一定等于他.

(C)劭一定小于他.

(D)都不一定.

4.以下說(shuō)法正確的是

(A)合外力為零,合外力矩一定為零;(B)合外力為零,合外力矩一定不為零;

(C)合外力為零,合外力矩可以不為零;(D)合外力不為零,合外力矩一定不為零;

(E)合外力不為零,合外力矩一定為零.

5.有A、8兩個(gè)半徑相同,質(zhì)量相同的細(xì)圓環(huán).A環(huán)的質(zhì)量均勻分布石環(huán)的質(zhì)量不均勻分

布,設(shè)它們對(duì)過(guò)環(huán)心的中心軸的轉(zhuǎn)動(dòng)慣量分別為JA和則有

(A)(B)

(C)無(wú)法確定哪個(gè)大.(D)JA=JB-

二.填空題

1.在OXY平面內(nèi)的三個(gè)質(zhì)點(diǎn),質(zhì)量分別為〃2|=1kg,62=2kg,和加3=3kg,位置坐標(biāo)(以米

為單位)分別為"21(—3,—2)、他(一2,1)和63(1,2),則這三個(gè)質(zhì)點(diǎn)構(gòu)成的質(zhì)點(diǎn)組對(duì)Z軸的轉(zhuǎn)動(dòng)慣

量人二.

2.轉(zhuǎn)動(dòng)著的飛輪轉(zhuǎn)動(dòng)慣量為人在仁0時(shí)角速度為四,此后飛輪經(jīng)歷制動(dòng)過(guò)程,阻力矩

的大小與角速度。的平方成正比,比例系數(shù)為&(改為大于0的常數(shù)),當(dāng)。二前/3時(shí),飛輪的角

加速度《=,從開(kāi)始制動(dòng)到口=g/3所經(jīng)過(guò)的時(shí)間t

3.一長(zhǎng)為I、質(zhì)量可以忽略的直桿,兩端分別固定有質(zhì)量為2m

和m的小球,桿可繞通過(guò)其中心。且與桿垂直的水平光滑固定軸

在鉛直平面內(nèi)轉(zhuǎn)動(dòng)。開(kāi)始桿與水平方向成某一角度6,處于靜止?fàn)頼圖3.2

態(tài),如圖3.2所示。釋放后,桿繞0軸轉(zhuǎn)動(dòng),則當(dāng)桿轉(zhuǎn)到水平位置

時(shí),該系統(tǒng)所受的合外力矩的大小M=,此時(shí)該系統(tǒng)角加速度的大小

三.計(jì)算題

1.以20N-m的恒力矩作用在有固定軸的轉(zhuǎn)輪上,在5s內(nèi)該輪的轉(zhuǎn)速由

零增大到100轉(zhuǎn)/分.此時(shí)移去該力矩,轉(zhuǎn)輪因摩擦力矩的作用經(jīng)100s而停止.戶苣

試推算此轉(zhuǎn)輪對(duì)其固定軸的轉(zhuǎn)動(dòng)慣量.11,

2.如圖3.3所示,有一飛輪,半徑為r=20cm,可繞水平軸轉(zhuǎn)動(dòng),在輪上繞()

一根很長(zhǎng)的輕繩,若在自由端系一質(zhì)量m\=20g的物體,此物體勻速下降;若一

系〃z?=50g的物體,則此物體在10s內(nèi)由靜止開(kāi)始加速下降40cm.設(shè)摩擦阻力口

矩保持不變.求摩擦阻力矩、飛輪的轉(zhuǎn)動(dòng)慣量以及繩系重物加2后的張力?團(tuán)一

練習(xí)四角動(dòng)量剛體定軸轉(zhuǎn)動(dòng)的角動(dòng)量守恒

一.選擇題

1.已知地球的質(zhì)量為如太陽(yáng)的質(zhì)量為M,地心與日心的距離為R,引力常數(shù)為G,則地

球繞太陽(yáng)作圓周運(yùn)動(dòng)的角動(dòng)量為

GMmGMm

(A)mjGMR(C)Mm

R2R

2.如圖4.1所示,一勻質(zhì)細(xì)桿可繞通過(guò)上端與桿垂直的水平光滑固定軸旋轉(zhuǎn),初始狀態(tài)為靜

4

止懸掛?,F(xiàn)有一個(gè)小球自左方水平打擊細(xì)桿.設(shè)小球與細(xì)桿之間為非彈性碰撞,則在碰撞過(guò)程中

對(duì)細(xì)桿與小球這一系統(tǒng)

(A)只有機(jī)械能守恒.

(B)只有動(dòng)量守恒.綺2

9)只有對(duì)轉(zhuǎn)軸o的角動(dòng)量守恒.0n

(D)機(jī)械能、動(dòng)量角和動(dòng)量均守恒.

3.一力學(xué)系統(tǒng)由兩個(gè)質(zhì)點(diǎn)組成,它們之間只有引力作用。若兩質(zhì)點(diǎn)所受

外力的矢量和為零,則此系統(tǒng)L

(A)動(dòng)量、機(jī)械能以及對(duì)一軸的角動(dòng)量都守恒;;

(B)動(dòng)量、機(jī)械能守恒,但角動(dòng)量是否守恒不能斷定;圖4]

(C)動(dòng)量守恒,但機(jī)械能和角動(dòng)量守恒與否不能斷定;

(D)動(dòng)量和角動(dòng)量守恒,但機(jī)械能是否守恒不能斷定。

4.在光滑水平桌面上有一光滑小孔。,一條細(xì)繩從其中穿過(guò),繩的兩端各栓一個(gè)質(zhì)量分別

如和的小球,使m\在桌面上繞。轉(zhuǎn)動(dòng),同時(shí)加2在重力作用下向下運(yùn)動(dòng),對(duì)于mI、組成系

統(tǒng)的動(dòng)量,它們對(duì)過(guò)。點(diǎn)軸的角動(dòng)量以及它們和地組成系統(tǒng)的機(jī)械能,以下說(shuō)法正確的是

(A)如、他組成系統(tǒng)的動(dòng)量及它們和地組成系統(tǒng)的機(jī)械能都守恒;

(B)如、〃及組成系統(tǒng)的動(dòng)量,它們對(duì)過(guò)。點(diǎn)軸的角動(dòng)量以及它們和地組成系統(tǒng)的機(jī)械能

都守恒;

(C)只有〃21、〃22組成系統(tǒng)對(duì)過(guò)0點(diǎn)軸的角動(dòng)量守恒;

(D)只有〃21、他和地組成系統(tǒng)的機(jī)械能守恒;

(E)如、加2組成系統(tǒng)對(duì)過(guò)。點(diǎn)軸的角動(dòng)量以及它們和地組成系統(tǒng)的機(jī)械能守恒.

5.一人站在無(wú)摩擦的轉(zhuǎn)動(dòng)平臺(tái)上并隨轉(zhuǎn)動(dòng)平臺(tái)一起轉(zhuǎn)動(dòng),雙臂水平地舉著二啞鈴,當(dāng)他把

二啞鈴水平地收縮到胸前的過(guò)程中,

(A)人與啞鈴組成系統(tǒng)對(duì)轉(zhuǎn)軸的角動(dòng)量守恒,人與啞鈴?fù)脚_(tái)組成系統(tǒng)的機(jī)械能不守恒.

(B)人與啞鈴組成系統(tǒng)對(duì)轉(zhuǎn)軸的角動(dòng)量不守恒,人與啞鈴?fù)脚_(tái)組成系統(tǒng)的機(jī)械能守恒.

(C)人與啞鈴組成系統(tǒng)對(duì)轉(zhuǎn)軸的角動(dòng)量,人與啞鈴?fù)脚_(tái)組成系統(tǒng)的機(jī)械能都守恒.

(D)人與啞鈴組成系統(tǒng)對(duì)轉(zhuǎn)軸的角動(dòng)量,人與啞鈴?fù)脚_(tái)組成系統(tǒng)的機(jī)械能都不守恒.

二.填空題

1.一飛輪以角速度GO繞軸旋轉(zhuǎn),飛輪對(duì)軸的轉(zhuǎn)動(dòng)慣量為4;另一靜止飛輪突然被同軸地

嚙合到轉(zhuǎn)動(dòng)的飛輪上,該飛輪對(duì)軸的轉(zhuǎn)動(dòng)慣量為前者的二倍,嚙合后整個(gè)系統(tǒng)的角速度。

2.一質(zhì)量為小的質(zhì)點(diǎn)沿著一條空間曲線運(yùn)動(dòng),該曲線在直角坐標(biāo)系

下的定義式為予=。850〃+6$皿。",其中。、b、G皆為常數(shù)。則此

質(zhì)點(diǎn)所受的對(duì)原點(diǎn)的力矩祈二;該質(zhì)點(diǎn)對(duì)原點(diǎn)的

角動(dòng)量0

3.如圖4.2所示,質(zhì)量為M的均勻細(xì)棒,長(zhǎng)為L(zhǎng),可繞過(guò)端點(diǎn)O的水平

光滑軸在豎直面內(nèi)轉(zhuǎn)動(dòng),當(dāng)棒豎直靜止下垂時(shí),有一質(zhì)量為機(jī)的小球飛來(lái),圖4.2

垂直擊中棒的中點(diǎn).由于碰撞,小球碰后以初速度為零自由下落,而細(xì)棒碰撞后的最大偏角為“

求小球擊中細(xì)棒前的速度值v=。

三.計(jì)算題

1.如圖4.3所示,質(zhì)量為機(jī)的子彈,穿過(guò)如圖2所示的懸掛于垂直平面的均勻細(xì)棒端部

后,速率由口減少到必2。已知均勻細(xì)棒的質(zhì)量為M,棒的長(zhǎng)度為L(zhǎng),棒的懸掛點(diǎn)無(wú)摩擦阻力,

如果細(xì)棒能在垂直平面內(nèi)完成一個(gè)完全的圓周運(yùn)動(dòng),則子彈速度口的最小值應(yīng)為多少?

2.如圖4.4所示,一質(zhì)量為機(jī)的小球,被長(zhǎng)為/輕繩固定在定點(diǎn)A,開(kāi)始時(shí)小球靜止處

于水平位置。當(dāng)小球在豎直平面內(nèi)作圓周運(yùn)動(dòng)時(shí),會(huì)運(yùn)動(dòng)到最低點(diǎn)與質(zhì)量為M的靜止均勻細(xì)

棒發(fā)生碰撞。細(xì)棒長(zhǎng)為L(zhǎng),可繞過(guò)端點(diǎn)0的水平光滑軸在豎直面內(nèi)轉(zhuǎn)動(dòng)。假設(shè)小球碰撞后靜止,

而細(xì)棒碰后以初始角速度既在豎直平面內(nèi)作定軸轉(zhuǎn)動(dòng)。求:(1)細(xì)棒碰撞后獲得的初始角

速度疑;(2)細(xì)棒定軸轉(zhuǎn)動(dòng)過(guò)程中在任意啦置的角加速度和角速度.

圖4.4

圖4.3

練習(xí)五機(jī)械振動(dòng)

一.選擇題

1.同一彈簧振子按圖5.1的三種方法放

置,它們的振動(dòng)周期分別為北、幾、7;(摩擦力

忽略),則三者之間的關(guān)系為

(A)TEE.

(B)Ta=Tb>Tc.

3)S)?

(C)Ta>Tb>Tc.

圖5,1

(D)Ta<Tb<£.

(E)TQ>Tb<Tc.

2.一質(zhì)點(diǎn)作簡(jiǎn)諧振動(dòng),已知振動(dòng)周期為則T,其振動(dòng)動(dòng)能變化的周期是

(A)774.(B)772.

(C)T.(D)2T.

6

3.一質(zhì)點(diǎn)作諧振動(dòng),其方程為戶ACOS(G/+°).在求質(zhì)點(diǎn)的振動(dòng)動(dòng)能時(shí),得出下面5個(gè)表達(dá)式

(1)(1/2)mc(/A2sin\cot(2)(\l2)marA1cQs\(ot+^>);

(3)(以2)乂2§皿山+9);(4)(1/2)M2cos2(d>r+^));

(5)sin2(<wt+#);

其中〃7是質(zhì)點(diǎn)的質(zhì)量法是彈簧的倔強(qiáng)系數(shù),7是振動(dòng)的周期.下面結(jié)論中正確的是

(A)(1),(4)是對(duì)的;(B)(2),(4)是對(duì)的;

(C)(1),(5)是對(duì)的:(D)(3),(5)是對(duì)的.

4.已知一質(zhì)點(diǎn)沿y軸作簡(jiǎn)諧振動(dòng),其振動(dòng)方程為y=Acos@,+,)。與其對(duì)應(yīng)的振動(dòng)曲

4

5.有兩個(gè)振動(dòng):x\=Aicos。t,X2=Azsincof,且42V4.則合成振動(dòng)的振幅為

(A)Ai+A2.(B)AI-A2.

22,/2

(C)(AI+A2).

二.填空題

1.質(zhì)量為”的物體和一個(gè)輕彈簧組成彈簧振子,其固有振動(dòng)周期為T,當(dāng)它作振幅為A的自

由簡(jiǎn)諧振動(dòng)時(shí),其振動(dòng)能量E=.

2.有一質(zhì)點(diǎn)作簡(jiǎn)諧振動(dòng),通過(guò)計(jì)算得出在仁0時(shí)刻,它在

X軸上的位移為戶+后A/2,速度v<0,如圖5.2所示的旋轉(zhuǎn)

矢量圖中X軸上的尸點(diǎn).只考慮位移時(shí),它對(duì)應(yīng)著旋轉(zhuǎn)矢量

圖中圓周上的點(diǎn),再考慮速度的方向,它應(yīng)只

對(duì)應(yīng)旋轉(zhuǎn)矢量圖中圓周上的點(diǎn),由此得出質(zhì)點(diǎn)

振動(dòng)的初位相值為.

3.一物體同時(shí)參與同一直線上的兩個(gè)簡(jiǎn)諧振動(dòng):

xi=0.03cos(4v/+〃/3)(SI)

X2=0.05cos(4乃f-243)(SI)

合成振動(dòng)的振動(dòng)方程為.

三.計(jì)算題

圖5.3

1.如圖5.3所示,輕質(zhì)彈簧的一端固定,另一端系

一輕繩,輕繩繞過(guò)滑輪連接一質(zhì)量為m的物體,繩在輪上不打滑,使物體上下自由振動(dòng)。已

知彈簧的勁度系數(shù)為上滑輪的半徑為R,轉(zhuǎn)動(dòng)慣量為人

(1)證明物體作簡(jiǎn)諧振動(dòng);

(2)求物體的振動(dòng)周期;

(3)設(shè)片0時(shí),彈簧無(wú)伸縮,物體也無(wú)初速,寫出物體的振動(dòng)表式。

2.一質(zhì)量為lOxlO^kg的物體作簡(jiǎn)諧振動(dòng),振幅為24cm,周期為4.0s,當(dāng)1=0時(shí)位移為

+24cm,求:

(l)f=0.5s時(shí),物體所在的位置及此時(shí)所受力的大小和方向;

(2)由起始位置運(yùn)動(dòng)到12cm處所需的最短時(shí)間;

(3)在x=12cm處物體的總能量.

練習(xí)六機(jī)械波

一.選擇題

1.一平面簡(jiǎn)諧波的波動(dòng)方程為

y=0.1cos(3加一百+加(SI)

t=0時(shí)的波形曲線如圖6.1所示,則

(A)。點(diǎn)的振幅為-0.1m.

(B)波長(zhǎng)為3m.

(C)m8兩點(diǎn)間相位差為力2.

(D)波速為9m/s.

2.一平面簡(jiǎn)諧波表達(dá)式為y=—().()5sin;z(f—2x)(SI),則該波的頻率〃(Hz),波速〃(m/s)及

波線上各點(diǎn)振動(dòng)的振幅A(m)依次為

(A)1/2,1/2,-0.05

.5^f=ocin/sD.25s

(B)1/2,1,-0.05

x(cm)

(C)2,2,0.05

(D)1/2,1/2,0.05圖6.2

3.某平面簡(jiǎn)諧波在/=0.25s時(shí)波形如圖6.2所

示,則該波的波函數(shù)為:

(A)y=0.5cos[4^,(r—x/8)—^/21(cm).

(B)y=0.5cos[4^-(Z+x/8)+^/2](cm).

(C)y=0.5cos[4^-(t+x/8)—^72](cm).

(D)y=0.5cos[4^,(/—x/8)+^/2](cm).

4.一平面諧波沿x軸正向傳播尸0時(shí)刻的波形上圖6.3所示,則P處質(zhì)點(diǎn)的振動(dòng)在h0時(shí)

刻的旋轉(zhuǎn)矢量圖是

(C)(D)

5.關(guān)于產(chǎn)生駐波的條件,以下說(shuō)法正確的是

(A)任何兩列波疊加都會(huì)產(chǎn)生史波;

8

(B)任何兩列相干波疊加都能產(chǎn)生駐波;

(C)兩列振幅相同的相干波疊加能產(chǎn)生駐波;

(D)兩列振幅相同,在同一直線上沿相反方向傳播的相干波疊加才能產(chǎn)生駐波.

二.填空題

LA、B是簡(jiǎn)諧波波線上的兩點(diǎn),已知B點(diǎn)的位相比A點(diǎn)落后力3,4、B兩點(diǎn)相距

0.5m,波的頻率為100Hz,則該波的波長(zhǎng)九二m,波速u=m/s.

2.兩相干波分別沿BP、CP方向傳播,它們?cè)贐點(diǎn)和。點(diǎn)的振動(dòng)表達(dá)式分別為

yB=0.2cos2^/(SI)yc=0.3cos(2^r+^)(SI)

己知BP=0.4m,CP=0.5m波速〃=0.2m/s,則P點(diǎn)合振動(dòng)的振幅為.

3.一平面簡(jiǎn)諧機(jī)械波在媒質(zhì)中傳播時(shí),若某媒質(zhì)元在f時(shí)刻的能量是10J,則在(f+7)(r

為波的周期)時(shí)刻該媒質(zhì)質(zhì)元的振動(dòng)動(dòng)能是.

三.計(jì)算題

1.一簡(jiǎn)諧波在介質(zhì)中以波速〃=20m/s從左向右傳播,已知在傳播路徑上某點(diǎn)A的振動(dòng)周

期7^2s,振幅A=3m,當(dāng)/=0時(shí)刻,A點(diǎn)振動(dòng)處于產(chǎn)A/2處且朝),軸負(fù)

V

方向運(yùn)動(dòng)。另一點(diǎn)D在A右方9米處。若取x軸正方向向右,以A點(diǎn)〃

左方5米處的0點(diǎn)為x軸原點(diǎn),如圖6.4所示,求:(1)A點(diǎn)的振動(dòng)方5Q1

程和此波的波函數(shù);(2)簡(jiǎn)諧波傳播到D點(diǎn)產(chǎn)生的振動(dòng)方程和D點(diǎn)為

固定端,產(chǎn)生的反射波的波函數(shù);(3)傳播方向上形成的駐波方程和波oAD

節(jié)、波腹的位置.

2.一平面簡(jiǎn)諧波,波速w=5m/s,/=1s時(shí)波形曲

線如圖6.5所示.

求:(l)x=O處的振動(dòng)方程;

(2)該波的波動(dòng)方程。

3.一平面簡(jiǎn)諧波沿Ox軸的正方向傳播,如圖

6.6(b)所示,波速為lm/s,A點(diǎn)為Ox軸正半軸上坐標(biāo)

x=5m處的一點(diǎn),若已知A點(diǎn)隨時(shí)口的振動(dòng)規(guī)律如圖6.6(a)的振動(dòng)曲線所示,試根據(jù)圖中數(shù)據(jù)

求:

(1)A點(diǎn)簡(jiǎn)諧振動(dòng)的振動(dòng)方程;

(2)由A點(diǎn)的振動(dòng)求此列簡(jiǎn)諧波的波動(dòng)方程。

圖6.6(b)

圖6.6(a)

練習(xí)七氣體動(dòng)理論

一、選擇題

1.理想氣體的微觀模型是

(A)分子大小可以忽略不計(jì)的氣體分子模型;

(B)分子在沒(méi)有碰撞時(shí),分子間無(wú)任何作用力的分子模型;

(C)分子在運(yùn)動(dòng)過(guò)程中遵守牛頓運(yùn)動(dòng)定律,碰撞時(shí)分子是彈性小球的氣體分子模型;

(D)分子大小可以忽略不計(jì);沒(méi)碰撞時(shí),相互間無(wú)作用力;碰撞時(shí)為彈性碰撞;運(yùn)動(dòng)中遵

守牛頓運(yùn)動(dòng)定律的氣體分子模型.

2.如圖7.1所示,已知每秒有4個(gè)氧氣分子(分子質(zhì)量為,〃)以

速度v沿著與器壁法線成a角方向撞擊面積為S的氣壁,則這群分子

作用于器壁的壓強(qiáng)是

(A)p=NmvcQsaIS.

(B)p=Nmvsina/S.

(C)p=2Nmvcosa/S.

(D)p=2Nmvsina/S,

3.密閉容器內(nèi)貯有1mol氮?dú)?視為理想氣體),其溫度為7;若容器

以速度u作勻速直線運(yùn)動(dòng),則該氣體的能量為

(A)3kT.(B)3kT/2+^0^/2.

(C)3R772.(D)3R772十根同儼/2.

4.如圖7.2所示為某種理想氣體的速率分布曲線,則下面說(shuō)法正

確的是:

(A)曲線反映氣體分子數(shù)隨速率的變化關(guān)系;圖7.2

(B)/vi)dv表示也?力+小速率區(qū)間的分子數(shù)占總分子數(shù)的百分

比;

(C)曲線與橫軸所圍的面積代表氣體分子的總數(shù);

(D)對(duì)應(yīng)速率最大的分子;

(E)速率為也的分子數(shù)比速率為vp的分子數(shù)少.

5.一容器中存有一定量的理想氣體,設(shè)分子的平均碰撞頻率為Z,平均自由程為4,則當(dāng)

溫度7升高時(shí)

(A)z增大,又減小.(B)z、N都不變.

(C)z增大,冗不變.(D)Z、2都增大.

二.填空題

1.4、B、C三個(gè)容器中裝有同一種理想氣體,其分子數(shù)密度之比為〃4:2:1,而分

子的方均根速率之比為而:應(yīng):送=1:2:4。則它們的壓強(qiáng)之比pA:PB:pc

2.根據(jù)理想氣體的統(tǒng)計(jì)假設(shè):氣體處于平衡狀態(tài)時(shí),分子的密度均勻,分子向各方向運(yùn)

10

動(dòng)的機(jī)會(huì)相等.有:VV2;v=;

匕----------U,-----------匕=-----------?

3.電子管的真空度為1.0Xl(nmmHg,設(shè)氣體分子的有效直徑為3.0X10-,0m,則溫度

為300B時(shí)單位體積中的分子數(shù)片,平均自由程4二

撞頻率1.

三.計(jì)算題

1.一容器貯有氧氣,其壓強(qiáng)p-l.Oatm,溫度為f=27C.求:

(1)單位體積內(nèi)的分子數(shù);(2)氧氣的質(zhì)量密度p;

(3)氧分子的平均動(dòng)能;

(4)氧分子的平均距離.(氧分子質(zhì)量加二5.35x1026kg)

2.設(shè)有N個(gè)粒子的系統(tǒng),其速率的分布如圖7.3所示,求:

(1)分布函數(shù)?y)的表達(dá)式;(2)a與w之間的關(guān)系;

(3)速度在1.5即到2.0w之同粒子數(shù);

(4)粒子的平均速率;(5)O.5vo到處區(qū)間內(nèi)粒子平均速率.

練習(xí)八熱力學(xué)第一定律等值過(guò)程

一.選擇題

1.理想氣體的內(nèi)能是狀態(tài)的單值函數(shù),下面對(duì)理想氣體內(nèi)能的理解錯(cuò)誤的是

(A)氣體處于一定狀態(tài),就具有一定的內(nèi)能;

(B)對(duì)應(yīng)于某一狀態(tài)的內(nèi)能是可以直接測(cè)量的;

(C)當(dāng)理想氣體的狀態(tài)發(fā)生變化時(shí),內(nèi)能不一定隨之變化;

(D)只有當(dāng)伴隨著溫度變化的狀態(tài)變化時(shí),內(nèi)能才發(fā)生變化;

(E)從某一初態(tài)出發(fā),不論經(jīng)歷何過(guò)程到達(dá)某末狀態(tài),只要初

狀態(tài)溫度相同,末狀態(tài)的溫度也相同廁內(nèi)能的改變也一定相同.

2.熱力學(xué)第一定律只適用于

(A)準(zhǔn)靜態(tài)過(guò)程(或平衡過(guò)程).

(B)初、終態(tài)為平衡態(tài)的一切過(guò)程.

(C)封閉系統(tǒng)(或孤立系統(tǒng)).

(D)一切熱力學(xué)系統(tǒng)的任意過(guò)程.

3.1mol理想氣體從〃一V圖上初態(tài)。分別經(jīng)歷如圖8.1所示的

(1)或⑵過(guò)程到達(dá)末態(tài)力.已知?jiǎng)t這兩過(guò)程中氣體吸收的熱量

Q\和。2的關(guān)系是

(A)21>22>0,(B)02>2i>0.圖8.2

(C)Q1<21<0.(D)

4.如圖8.2所示的三個(gè)過(guò)程中c為等溫過(guò)程,則有

(A)a-力過(guò)程AEcOMf/過(guò)程

0

圖8.3

(B)。過(guò)程△£>(),〃.d過(guò)程△氏0.

(C)aib過(guò)程AEvO,aid過(guò)程AE>0.

(D)afb過(guò)程AE>0,aid過(guò)程△£>().

5.對(duì)一定量的理想氣體,下列所述過(guò)程中不可能發(fā)生的是

(A)從外界吸熱,但溫度降低;(B)對(duì)外做功且同時(shí)吸熱;

(C)吸熱且同時(shí)體積被壓縮;(D)等溫下的絕熱膨脹.

二.填空題

1.一系統(tǒng)由圖8.3中的A態(tài)沿A8C到達(dá)。態(tài)時(shí),吸收了350J的熱量洞時(shí)對(duì)外做了126J

的功.如果沿ADC進(jìn)行,則系統(tǒng)做功42J,這系統(tǒng)吸收熱量

為.當(dāng)系統(tǒng)由。態(tài)沿曲線C4返回A態(tài)時(shí),如果外界對(duì)系

統(tǒng)做功84J,問(wèn)這系統(tǒng)是吸熱還是放熱?.熱量傳遞

是.

2.一定質(zhì)量的理想氣體在兩等溫線之間作由。一人的絕熱變化,

如圖8.4所示.設(shè)在a-b過(guò)程中,內(nèi)能的增量為溫度的增

量為AT,對(duì)外做功為A,從外界吸收的熱為Q,則在這幾個(gè)量中,

符號(hào)為正的量是;符號(hào)為負(fù)的量是;

等于零的量是.

3.2mol單原子分子的理想氣體,開(kāi)始時(shí)處于壓強(qiáng)pi=10atm、溫度A=400K的平衡態(tài),后

經(jīng)過(guò)一個(gè)絕熱過(guò)程,壓強(qiáng)變?yōu)閜i=2alm,求在此過(guò)程中氣體對(duì)外作的功.

三.計(jì)算題

1.0.02kg的基氣(視為理想氣體),溫度由17%:升為27。。若在升溫過(guò)程中,(1)體積保持不

變;⑵壓強(qiáng)保持不變;(3)不與外界交換熱量.試分別求出氣體內(nèi)能的改變、吸收的熱量、外界

對(duì)氣體所作的功.

2.一定量的理想氣體,由狀態(tài)a經(jīng)b到達(dá)c如圖8.5,為

一直線。求此過(guò)程中

(1)氣體對(duì)外作的功;

(2)氣體內(nèi)能的增量;

(3)氣體吸收的熱量.

(latm=1.013xl05Pa)

練習(xí)九循環(huán)過(guò)程熱力學(xué)第二定律

一.選擇題

1.一絕熱密封容器,用隔板分成相等的兩部分,左邊盛有

一定量的理想氣體,壓強(qiáng)為〃0,右邊為真空,如圖9.1所示.今將

隔板抽去,氣體自由膨脹(等溫過(guò)程),則氣體達(dá)到平衡時(shí),氣

體的壓強(qiáng)是(下列各式中/=Cp/Cv):圖9.1

(A)po/27.(B)2Ro.(C)po.(D)pQ/2.

2.某理想氣體,初態(tài)溫度為T,體積為匕先絕熱變化使體積變?yōu)?V,再等容變化使溫度恢復(fù)

12

到T,最后等溫變化使氣體回到初態(tài),則整個(gè)循環(huán)過(guò)程中,氣體

(A)向外界放熱.(B)從外界吸熱.

(C)對(duì)外界做正功.(D)內(nèi)能減少.

3.氣體由一定的初態(tài)絕熱壓縮到一定體積,一次緩緩地壓縮,溫度變化為△〃;另一次很快

地壓縮,穩(wěn)定后溫度變化為A4其它條件都相同,則有

(A)ATi=A72.(B)ATi<ATo.

(C)ATi>\T2.(D)無(wú)法判斷.

4.下面所列四圖分別表示某人設(shè)想的理想氣體的四個(gè)循環(huán)過(guò)程,請(qǐng)選出其中一個(gè)在物理

上可能實(shí)現(xiàn)的循環(huán)過(guò)程的圖的符號(hào)

5.如圖9.2所示,工作物質(zhì)經(jīng)。I雙直線過(guò)程)與b\\a組成一循環(huán)過(guò)程,己知在過(guò)程〃I〃中,

工作物質(zhì)與外界交換的凈熱量為Q,b\la為絕熱過(guò)程,在p-V圖上該循環(huán)閉合曲線所包圍的

面積為W,則循環(huán)的效率為

(A)r]=W/Q.

(B)/7=1—Ti/Ti.

(C)T1<W/Q.

(D)〃>W/Q.

(E)以上答案均不對(duì).

二.填空題

1.一卡諾熱機(jī)低溫?zé)嵩吹臏囟葹?7。。效率為40%,高溫?zé)嵩吹臏囟?i=.

2.設(shè)一臺(tái)電冰箱的工作循環(huán)為卡諾循環(huán),在夏天工作,環(huán)境溫度在35。。冰箱內(nèi)的溫度為

0℃,這臺(tái)電冰箱的理想制冷系數(shù)為e=.

3.兩條絕熱線能否相交?答:相交.因?yàn)楦鶕?jù)熱力學(xué)第二定律,如果兩條絕

熱線,就可以用條等溫線與其組成一個(gè)循環(huán),只從單一熱源吸取熱量,完全變

為有用功,而其它物體不發(fā)生變化,這違反熱力學(xué)第二定律,故有前面的結(jié)論.

三.計(jì)算題

1.汽缸內(nèi)貯有36g水蒸汽(水蒸汽視為剛性分子理想氣體),經(jīng)abcda循環(huán)過(guò)程,如圖9.3所

示.其中。一乩c一4為等容過(guò)程力一。為等溫過(guò)程,d一。為等壓過(guò)程.試求:

(1)%=?(2)(3)循環(huán)過(guò)程水蒸汽作的凈功W二?

(4)循環(huán)效率7尸?

2.1mol單原子分子理想氣體的循環(huán)過(guò)程的P-V圖,如圖9.4,求:

(1)氣體循環(huán)一次,各過(guò)程的熱量、功和內(nèi)能的變化;(2)循環(huán)的效率.

M105Pa)

3.己知Imol某種剛性雙原子分子氣體,作圖9.5

所示的正循環(huán)過(guò)程,12、23、34和41分別為

等壓、絕熱、等體和等溫過(guò)程,若狀態(tài)1(0.%)

壓強(qiáng)和體積為已知,狀態(tài)2的V2=2VI,

狀態(tài)3的V3=1.5V2,狀態(tài)4的04=0.5*3,

求:(1)12等壓過(guò)程熱量。⑵23絕熱過(guò)程中

的內(nèi)能改變/七23,34等體過(guò)程的熱量。34,41等

溫過(guò)程功雙H;(2)循環(huán)效率〃.

V

(絕熱方程為7Vk二常量,ln3=1.099,住,=0.85)

圖9.5

練習(xí)十光的相干性雙縫干涉光程

一.選擇題

1.有三種裝置

(1)完全相同的兩盞鈉光燈,發(fā)出相同波長(zhǎng)的光,照射到屏上;

(2)同一盞鈉光燈,用黑紙蓋住其中部將鈉光燈分成上下兩部分同時(shí)照射到屏上;

(3)用一盞鈉光燈照亮一狹縫,此亮縫再照亮與它平行間距很小的兩條狹縫,此二亮縫的

光照射到屏上.

以上三種裝置,能在屏上形成穩(wěn)定干涉花樣的是

(A)裝置(3).(B)裝置(2).

(C)裝置⑴(3).(D)裝置⑵⑶.

2.在雙縫干涉實(shí)驗(yàn)中,為使屏上的干涉條紋間距變大,可以采取的辦法是

(A)使屏靠近雙縫.(B)把兩個(gè)縫的寬度稍微調(diào)窄.

(C)使兩縫的間距變小.(D)改用波長(zhǎng)較小的單色光源.

3.如圖10.1所示,設(shè)“S2為兩相干光源發(fā)出波長(zhǎng)為4的單色光,分別通過(guò)兩種介質(zhì)(折射率

分別為m和〃2,且射到介質(zhì)的分界面上的P點(diǎn),己知51P=s2P=八則這兩條光的幾何路

程Ar,光程差b和相位差A(yù)汾別為

14

(A)Ar=0,0,卜(p=0.

(B)Ar=(〃i—〃2)r,b=(修一〃2)r,Ae=2;r(川一〃2)r!X.

(C)Ar=0,J=(n\-ni)r,\(p=27c(n\-ni)r!Z.

(D)Ar=0,(^=(HI-M2)r,&@=2乃r.

4.如圖10.2所示,在一個(gè)空長(zhǎng)方形箱子的一邊刻上一個(gè)雙'圖I。1

縫,當(dāng)把一個(gè)鈉光燈照亮的狹縫放在刻有雙縫一邊的箱子外邊時(shí),

在箱子的對(duì)面壁上產(chǎn)生干涉條紋.如果把透明的油緩慢地灌入這箱子時(shí),條紋的間隔將會(huì)發(fā)生

什么變化?答:///

仆)保持不變.Q||郁|

(B)條紋間隔增加.Uurj-----------------------------彳

(C)條紋間隔有可能增加./Z----------------/

(D)條紋間隔減小.圖

5.用白光(波長(zhǎng)為400nm?760nm)垂直照射間距為d=0.25mm的雙縫,距縫50cm處放屏

幕,則觀察到的第一級(jí)彩色條紋和第五級(jí)彩色條紋的寬度分別是

(A)3.6Xl()ym,3.6X10-4m.(B)7.2XlO^m,3.6X10-3m.

(C)7.2Xl(r4m,7.2X10~4m.(D)3.6XlO^m,1.8XlO^m.

二.填空題

1.在雙縫干涉實(shí)驗(yàn)中,兩縫分別被折射率為?1和?2的透明------------

薄膜遮蓋,二者的厚度均為e,波長(zhǎng)為4的平行單色光垂直照射到??2

雙縫上,在屏中央處,兩束相干光的相位差A(yù)O=

2.如圖10.3所示,s、S2為雙縫,s是單色縫光源,當(dāng)s沿

平行于“和S2的連線向上作微小移動(dòng)時(shí),中央明條紋將向

移動(dòng);若S不動(dòng),而在S1后加一很薄的云母片,中

央明條紋將向移動(dòng).

3.如圖10.4所示,在勞埃鏡干涉裝置中,若光源S離屏的s'

距離為D,s離平面鏡的垂直距離為a(a很小).則平面鏡與屏交

界處A的干涉條紋應(yīng)為條紋;設(shè)入射光波長(zhǎng)為4則

相鄰條紋中心間的距離為_(kāi)______________.|51

三.計(jì)算題幺年

1.在雙縫干涉實(shí)驗(yàn)中,單色光源S到兩縫5|和52的距離riTlsT

分別為/|和/2,并且/1-/2=3/1,4為入射光的波長(zhǎng),雙縫之間的距h最;

離為a雙縫到屏幕的距離為如圖10.5,求

(1)零級(jí)明紋到屏幕中央。點(diǎn)的距離;

(2)相鄰明條紋間的距離._

2.雙縫干涉實(shí)驗(yàn)裝置如圖10.6所示,雙縫與屏之間的距離而三機(jī)___

D=120cm,兩縫之間的距離c/=0.50mm,用波長(zhǎng)Q500nm的單色---D

光垂直照射雙縫.圖]06

(1)求原點(diǎn)。(零級(jí)明條紋所在處)上方的第五級(jí)明條紋的

坐標(biāo).

(2)如果用厚度e=1.0X10-2mm,折射率〃=1.58的透明薄膜覆蓋在圖中的旭縫后面,求上述

第五級(jí)明條紋的坐標(biāo)V.

練習(xí)十一薄膜干涉劈尖牛頓環(huán)

一.選擇題

1.如圖H.1所示,薄膜的折射率為〃2,入射介質(zhì)的折射率為刃,透射介質(zhì)為〃3,且?1<

〃2<〃3,入射光線在兩介質(zhì)交界面的反射光線分別為⑴和(2),則產(chǎn)

生半波損失的情況是

(A)(1)光產(chǎn)生半波損失.(2)光不產(chǎn)生半波損失.

(B)(1)光(2)光都產(chǎn)生半波損失.

(C)(1)光(2)光都不產(chǎn)生半波損失.

(D)(1)光不產(chǎn)生半波損失,(2)光產(chǎn)生半波損失.

2.波長(zhǎng)為4的單色光垂直入射到厚度為e的平行膜上,如圖11.2,

若反射光消失,則當(dāng)加V〃2<〃3時(shí),應(yīng)滿足條件(1);當(dāng)mV〃2>〃3時(shí)

應(yīng)滿足條件(2).條件(1),條件(2)分別是

(A)⑴=k入⑵2ne=kA.

(B)(1)2ne=kA+AJ2,(2)2ne=/2.

(C)(\)2ne=k4一42,⑵2ne=kA.

(D)(1)2〃。=k,九(2)2ne=k九一月2.

圖11.2

3.由兩塊玻璃片(川=1.75)所形成的空氣劈尖,其一端厚度為

零,另一端厚度為0.002cm,現(xiàn)用波長(zhǎng)為7000A的單色平行光,從入射角為30。角的方向射

在劈尖的表面,則形成的干涉條紋數(shù)為

(A)27.(B)56.

(C)40.(D)100.

4.一束波長(zhǎng)為丸的單色光由空氣入射到折射率為〃的透明

薄膜上,要使透射光得到加強(qiáng),則薄膜的最小厚度應(yīng)為

(A)〃2.(B)才2n.

(C)〃4.(D)〃4〃.

5.在圖11.3所示三種透明材料構(gòu)成的牛頓環(huán)裝置中,用單

色光垂直照射,在反射光中看到干涉條紋,則在接觸點(diǎn)P處形成

的圓斑為

(A)全明.

(B)全暗.

(C)右半部明,左半部暗.

(D)右半部暗,左半部明.圖11.4

二.填空題

1.如圖11.4所示,波長(zhǎng)為4的平行單色光垂直照射到兩個(gè)劈尖上,兩劈尖角分別為a和金,

16

折射率分別為小和〃2,若二者形成干涉條紋的間距相等,則仇,偽,川和〃2之間的關(guān)系

是.

2.一束白光垂直照射厚度為0.4gm的玻璃片,玻璃的折射率為1.50,在反射光中看見(jiàn)光的

波長(zhǎng)是在透射光中看到的光的波長(zhǎng)是.

3.用2=600nm的單色光垂直照射牛頓環(huán)裝置時(shí),從中央向外數(shù)第4個(gè)暗環(huán)對(duì)應(yīng)的空氣

膜厚度為pm.I

三.計(jì)算題2

i.波長(zhǎng)為九的單色光垂直照射到折射率為?2的劈尖薄

膜上,山V〃2V〃3,如圖11.5所示,觀察反射光形成的條紋.

(1)從劈尖頂部。開(kāi)始向右數(shù)第五條暗紋中心所對(duì)應(yīng)圖11.5

的薄膜厚度是多少?

(2)相鄰的二明紋所對(duì)應(yīng)的薄膜厚度之差是多少?!

2.在折射率〃=1.50的玻璃上,鍍上4=1.35的透明介質(zhì)薄膜,入IILII

射光垂直于介質(zhì)膜表面照射,觀察反射光的干涉,發(fā)現(xiàn)對(duì)力二600nm的X-----1----7

光干涉相消,對(duì)%2=700nm的光波干涉相長(zhǎng),且在600nm?700nm之間J

沒(méi)有別的波長(zhǎng)的光波最大限度相消或相長(zhǎng)的情況,求所鍍介質(zhì)膜的---------i-----2—1

厚度.圖11.6

3.圖11.6所示為一牛頓環(huán)裝置,設(shè)平凸透鏡中心恰好和平玻璃

接觸,透鏡凸表面的曲率半徑是R=400cm,用某單色平行光垂直入射,觀察反射光形成的牛頓環(huán),

測(cè)得第5個(gè)明環(huán)的半徑是0.30cm.

(1)求入射光的波長(zhǎng).

(2)設(shè)圖中QA=1.00cm,求在半徑為OA的范圍內(nèi)可觀察到的明環(huán)數(shù)目.

練習(xí)十二單縫衍射

一.選擇題

1.在邁克爾遜干涉儀的一條光路中放入一個(gè)折射率為〃,厚度為d的透明片后,這條光路

的光程增加了

(A)2(〃一l)d.(B)2nd.

(C)[n—\)d.(D)nd.

2.關(guān)于半波帶正確的理解是

(A)將單狹縫分成許多條帶,相鄰條帶的對(duì)應(yīng)點(diǎn)到達(dá)屏上會(huì)聚點(diǎn)的距離之差為入射光波長(zhǎng)

的1/2.

(B)將能透過(guò)單狹縫的波陣面分成許多條帶,相鄰條帶的對(duì)應(yīng)點(diǎn)的衍射光到達(dá)屏上會(huì)聚

點(diǎn)的光程差為入射光波長(zhǎng)的1/2.

(C)將能透過(guò)單狹縫的波陣面分成條帶,各條帶的寬度為入射光波長(zhǎng)的1/2.

(D)將單狹縫透光部分分成條帶,各條帶的寬度為入射光波長(zhǎng)的1/2.

3.在如圖12.1所示的單縫夫瑯和費(fèi)衍射實(shí)驗(yàn)裝置中,s為

單縫,L為透鏡,C為放在L的焦面處的屏幕,當(dāng)把單縫s沿垂

直于透鏡光軸的方向稍微向上平移時(shí),屏幕上的衍射圖樣

(A)向上平移.(B)向下平移.

(C)不動(dòng).(D)條紋間距變大.

4.波長(zhǎng)幾=50()nm的單色光垂直照射到寬度。=0.25mm的

單縫上,單縫后面放置一凸透鏡,在凸透鏡的焦面上放置一屏幕,用以觀測(cè)衍射條紋,今測(cè)得屏幕

上中央條紋一側(cè)第三個(gè)暗條紋和另一側(cè)第三個(gè)暗條紋之間的距離為12mm,則凸透鏡的焦

距為

(A)2m.(B)1m.

(C)0.5m.(D)0.2m.

(E)0.Im.

5.波長(zhǎng)4=550nm的單色光垂直照射到光柵常數(shù)2x10%m的平面衍射光柵上,可能

觀察到的光譜線的最大級(jí)次為

(A)2.(B)3.

(C)4.(D)5.

二.填空題

1.在單縫夫瑯和費(fèi)衍射實(shí)驗(yàn)中,設(shè)第一級(jí)喑紋的衍射角很小,若用鈉黃光(九七589nm)

照射單縫得到中央明紋的寬度為4.0mm,則用42=442nm的藍(lán)紫色光照射單縫得到的中央明

紋寬度為.

2.波長(zhǎng)為500nm-600nm的復(fù)合光平行地垂直照射在67=0.01mm的單狹縫上,縫后凸透鏡

的焦距為1.0m,則此二波長(zhǎng)光零級(jí)明紋的中心間隔為,一級(jí)明紋的中心間隔

為?

3.每厘米6000條刻痕的透射光柵,使垂直入射的單色光的第一級(jí)譜線偏轉(zhuǎn)20。角,這單色

光的波長(zhǎng)是,第二級(jí)譜線的偏轉(zhuǎn)角是.

三.計(jì)算題

1.用橙黃色的平行光垂直照射一寬為a=0.60mm的單縫,縫后凸透鏡的焦距戶40.0cm,觀

察屏幕上形成的衍射條紋.若屏上離中央明條紋中心1.40mm處的P點(diǎn)為一明條紋;求:

(1)入射光的波長(zhǎng);

(2)P點(diǎn)處條紋的級(jí)數(shù);

(3)從P點(diǎn)看,對(duì)該光波而言,狹縫處的波面可分成幾個(gè)半波帶?

2.在某個(gè)單縫衍射實(shí)驗(yàn)中,光源發(fā)出的光含有兩種波長(zhǎng)處和心并垂直入射于單縫上,假如辦

的第一級(jí)衍射極小與否的第二級(jí)衍射極小相重合,試問(wèn):(D這兩種波長(zhǎng)之間有何關(guān)系?

(2)在這兩種波長(zhǎng)的光所形成的衍射圖樣中,是否還有其它極小相重合?

練習(xí)十三衍射光柵光的偏振

一.選擇題

1.在雙縫衍射實(shí)驗(yàn)中,若保持雙縫S和%的中心之間的距離d不變,而把兩條縫的寬

18

度。稍微加寬,則

(A)單縫衍射的中央主級(jí)大變寬,其中所包含的干涉條紋數(shù)目變少。

(B)單縫衍射的中央主級(jí)大變寬,其中所包含的干涉條紋數(shù)目變多。

(C)單縫衍射的中央主級(jí)大變寬,其中所包含的干涉條紋數(shù)目不變。

(D

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論