新高考數(shù)學(xué)二輪復(fù)習(xí)解答題培優(yōu)練習(xí)專題05 利用導(dǎo)函數(shù)研究恒成立問題(典型題型歸類訓(xùn)練) 解析版_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)解答題培優(yōu)練習(xí)專題05 利用導(dǎo)函數(shù)研究恒成立問題(典型題型歸類訓(xùn)練) 解析版_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)解答題培優(yōu)練習(xí)專題05 利用導(dǎo)函數(shù)研究恒成立問題(典型題型歸類訓(xùn)練) 解析版_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)解答題培優(yōu)練習(xí)專題05 利用導(dǎo)函數(shù)研究恒成立問題(典型題型歸類訓(xùn)練) 解析版_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)解答題培優(yōu)練習(xí)專題05 利用導(dǎo)函數(shù)研究恒成立問題(典型題型歸類訓(xùn)練) 解析版_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題05利用導(dǎo)函數(shù)研究恒成立問題(典型題型歸類訓(xùn)練)一、必備秘籍分離參數(shù)法用分離參數(shù)法解含參不等式恒成立問題,可以根據(jù)不等式的性質(zhì)將參數(shù)分離出來,得到一個一端是參數(shù),另一端是變量表達(dá)式的不等式;步驟:①分類參數(shù)(注意分類參數(shù)時自變量SKIPIF1<0的取值范圍是否影響不等式的方向)②轉(zhuǎn)化:若SKIPIF1<0)對SKIPIF1<0恒成立,則只需SKIPIF1<0;若SKIPIF1<0對SKIPIF1<0恒成立,則只需SKIPIF1<0.③求最值.二、典型題型1.(2023·上海崇明·統(tǒng)考一模)若存在實(shí)數(shù)SKIPIF1<0,對任意實(shí)數(shù)SKIPIF1<0,使得不等式SKIPIF1<0恒成立,則實(shí)數(shù)m的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】不等式SKIPIF1<0等價(jià)于SKIPIF1<0即SKIPIF1<0,原命題等價(jià)于存在實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,對任意實(shí)數(shù)SKIPIF1<0不等式SKIPIF1<0恒成立,等價(jià)于存在實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,不等式SKIPIF1<0成立,記SKIPIF1<0,則SKIPIF1<0,(1)當(dāng)SKIPIF1<0時,對任意SKIPIF1<0,SKIPIF1<0恒成立,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減SKIPIF1<0①當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,②當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,從而當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0;(2)當(dāng)SKIPIF1<0時,令SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,①當(dāng)SKIPIF1<0時SKIPIF1<0,此時SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0即SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0即SKIPIF1<0時,SKIPIF1<0,從而當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,記SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,即SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,即SKIPIF1<0,即SKIPIF1<0;②當(dāng)SKIPIF1<0時SKIPIF1<0,此時SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0即SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0即SKIPIF1<0時,SKIPIF1<0,從而當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0;(3)當(dāng)SKIPIF1<0時,對任意SKIPIF1<0,SKIPIF1<0恒成立,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0①當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,②當(dāng)SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,從而當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0;綜上所述,SKIPIF1<0,所以SKIPIF1<0.故選:A【點(diǎn)睛】結(jié)論點(diǎn)睛:本題考查不等式的恒成立與有解問題,可按如下規(guī)則轉(zhuǎn)化:一般地,已知函數(shù)SKIPIF1<0,SKIPIF1<0(1)若SKIPIF1<0,SKIPIF1<0,總有SKIPIF1<0成立,故SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(3)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(4)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0,則SKIPIF1<0的值域是SKIPIF1<0值域的子集.2.(2023·海南省直轄縣級單位·??寄M預(yù)測)若SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,不符合題意;

當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0恒成立,即SKIPIF1<0恒成立,設(shè)SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減.故當(dāng)SKIPIF1<0時,SKIPIF1<0取得最大值SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,故選:C.3.(2023·江西九江·統(tǒng)考一模)若對SKIPIF1<0,不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由已知得:SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0即SKIPIF1<0,可得SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,求導(dǎo)得SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0;SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,且當(dāng)SKIPIF1<0時SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)圖像如圖所示.

SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0及SKIPIF1<0的圖像可知,SKIPIF1<0恒成立,即SKIPIF1<0成立,而SKIPIF1<0,SKIPIF1<0,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:C.4.(2023·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0,若對于任意的SKIPIF1<0,都有SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】對于任意的SKIPIF1<0,都有SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,且對于任意的SKIPIF1<0,都有SKIPIF1<0.①當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,符合題意;②當(dāng)SKIPIF1<0時,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0.當(dāng)SKIPIF1<0時,則SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,這與SKIPIF1<0矛盾,不符合題意;當(dāng)SKIPIF1<0時,則SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,符合題意.綜上,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】恒成立問題方法指導(dǎo):方法1:分離參數(shù)法求最值(1)分離變量.構(gòu)造函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.(2)SKIPIF1<0恒成立?SKIPIF1<0;SKIPIF1<0恒成立?SKIPIF1<0;SKIPIF1<0能成立?SKIPIF1<0;SKIPIF1<0能成立?SKIPIF1<0.方法2:根據(jù)不等式恒成立構(gòu)造函數(shù)轉(zhuǎn)化成求函數(shù)的最值問題,一般需討論參數(shù)范圍,借助函數(shù)單調(diào)性求解.5.(2023·湖南永州·統(tǒng)考一模)若函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時,恒有SKIPIF1<0,則實(shí)數(shù)t的取值范圍.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0時,恒有SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0恒成立.設(shè)SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞增;所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0恒成立,故SKIPIF1<0在SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0恒成立,即SKIPIF1<0,所以SKIPIF1<0恒成立,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞減;所以SKIPIF1<0.所以SKIPIF1<0.故答案為:SKIPIF1<0.6.(2023·四川雅安·統(tǒng)考一模)已知函數(shù)SKIPIF1<0在SKIPIF1<0時有極小值.曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0.(1)求SKIPIF1<0的值;(2)若對任意實(shí)數(shù)SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)由題意,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0時有極小值.曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0.∴SKIPIF1<0即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.當(dāng)SKIPIF1<0時,SKIPIF1<0在SKIPIF1<0時有極小值.故SKIPIF1<0符合題意,即為所求.(2)由題意及(1)得,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,即SKIPIF1<0對任意實(shí)數(shù)SKIPIF1<0恒成立,設(shè)SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0時SKIPIF1<0有極小值,也就是SKIPIF1<0的最小值SKIPIF1<0,故SKIPIF1<0即為所求.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查函數(shù)的求導(dǎo),導(dǎo)數(shù)法判斷函數(shù)單調(diào)性,導(dǎo)數(shù)法解決函數(shù)恒成立問題,構(gòu)造函數(shù)法,考查學(xué)生的計(jì)算能力和邏輯思維能力,具有很強(qiáng)的綜合性.7.(2023·四川內(nèi)江·統(tǒng)考一模)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,求SKIPIF1<0的極值;(2)若不等式SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)極小值為SKIPIF1<0,無極大值(2)SKIPIF1<0【詳解】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,得到SKIPIF1<0,又SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0處取到極小值,極小值為SKIPIF1<0,無極大值.(2)由SKIPIF1<0恒成立,得到SKIPIF1<0恒成立,即SKIPIF1<0恒成立,又SKIPIF1<0,所以SKIPIF1<0恒成立,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0恒成立,即SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,在區(qū)間SKIPIF1<0上單調(diào)遞減,故SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以,實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.【點(diǎn)睛】方法點(diǎn)晴,第(2)問中的恒成立問題,常用的方法,一是直接構(gòu)造函數(shù),求出函數(shù)的最值;二是通過參變分離,再構(gòu)造函數(shù),通過求函數(shù)最值來解決問題.三、專項(xiàng)訓(xùn)練一、單選題1.(2023·四川眉山·仁壽一中??寄M預(yù)測)已知SKIPIF1<0,且SKIPIF1<0恒成立,則k的值不可以是()A.-2 B.0 C.2 D.4【答案】D【詳解】由SKIPIF1<0,知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,于是SKIPIF1<0,即SKIPIF1<0,從而SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,因此SKIPIF1<0在SKIPIF1<0時取得最小值2,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0可取SKIPIF1<0,不能取4.故選:D2.(2023·江西南昌·江西師大附中??既#┤舨坏仁絊KIPIF1<0在SKIPIF1<0上恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】不等式SKIPIF1<0在SKIPIF1<0上恒成立,兩邊同除SKIPIF1<0得SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上恒成立,所以只需SKIPIF1<0即可,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恒成立,SKIPIF1<0單調(diào)遞增,又因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,故選:B3.(2023·黑龍江大慶·大慶實(shí)驗(yàn)中學(xué)校考模擬預(yù)測)已知SKIPIF1<0,SKIPIF1<0為實(shí)數(shù),不等式SKIPIF1<0在SKIPIF1<0上恒成立,則SKIPIF1<0的最小值為(

)A.-4 B.-3 C.-2 D.-1【答案】C【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,此時,SKIPIF1<0在SKIPIF1<0不恒成立,不合題意當(dāng)SKIPIF1<0時,SKIPIF1<0時,SKIPIF1<0,函數(shù)在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0時,SKIPIF1<0,函數(shù)在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0時取得最大值,由題意不等式SKIPIF1<0在SKIPIF1<0恒成立,只需SKIPIF1<0即SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0取得最小值為SKIPIF1<0,所以SKIPIF1<0最小值為SKIPIF1<0,故選:C二、多選題4.(2023·山西·校聯(lián)考模擬預(yù)測)已知SKIPIF1<0,則SKIPIF1<0的可能取值有(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BD【詳解】已知SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0成立;當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立或SKIPIF1<0恒成立;即SKIPIF1<0恒成立或SKIPIF1<0恒成立;設(shè)SKIPIF1<0SKIPIF1<0單調(diào)遞減;SKIPIF1<0單調(diào)遞增;SKIPIF1<0無最大值.設(shè)SKIPIF1<0SKIPIF1<0單調(diào)遞減;SKIPIF1<0單調(diào)遞增;SKIPIF1<0無最大值.當(dāng)SKIPIF1<0時,SKIPIF1<0成立或SKIPIF1<0成立;當(dāng)SKIPIF1<0時,SKIPIF1<0成立或SKIPIF1<0無解;SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立或SKIPIF1<0恒成立;即SKIPIF1<0恒成立或SKIPIF1<0恒成立;設(shè)SKIPIF1<0SKIPIF1<0單調(diào)遞減;SKIPIF1<0單調(diào)遞增;SKIPIF1<0無最小值.設(shè)SKIPIF1<0SKIPIF1<0單調(diào)遞減;SKIPIF1<0無最小值.當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立或SKIPIF1<0成立;當(dāng)SKIPIF1<0時,SKIPIF1<0成立;或SKIPIF1<0無解;SKIPIF1<0所以SKIPIF1<0.故選:BD.5.(2023·安徽馬鞍山·統(tǒng)考一模)已知函數(shù)SKIPIF1<0,若SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的可能的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】AD【詳解】SKIPIF1<0,故SKIPIF1<0恒成立,轉(zhuǎn)化成SKIPIF1<0恒成立,記SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0單調(diào)遞增,故由SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0恒成立,記SKIPIF1<0,故當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時,SKIPIF1<0單調(diào)遞增,故當(dāng)SKIPIF1<0時,SKIPIF1<0取最大值SKIPIF1<0,故由SKIPIF1<0恒成立,即SKIPIF1<0,故SKIPIF1<0,故選:AD6.(2023·海南·模擬預(yù)測)若SKIPIF1<0時,關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的值可以為(

)(附:SKIPIF1<0)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BD【詳解】由題意知:當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立;令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,即SKIPIF1<0恒成立,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:BD.三、填空題7.(2023上·河北保定·高三定州市第二中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0,若SKIPIF1<0對SKIPIF1<0恒成立,則實(shí)數(shù)a的取值范圍是.【答案】SKIPIF1<0【詳解】易知SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0,則有SKIPIF1<0,設(shè)SKIPIF1<0,易知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,則有SKIPIF1<0,解之得SKIPIF1<0.故答案為:SKIPIF1<0.8.(2023·河南洛陽·統(tǒng)考模擬預(yù)測)已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0時,SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增.SKIPIF1<0時,SKIPIF1<0恒成立,即SKIPIF1<0恒成立,則SKIPIF1<0在SKIPIF1<0上恒成立,則SKIPIF1<0即SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0則當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0單調(diào)遞增.則當(dāng)SKIPIF1<0時SKIPIF1<0取得最小值SKIPIF1<0,則SKIPIF1<0則實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0故答案為:SKIPIF1<0四、問答題9.(2023·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0(其中SKIPIF1<0為自然對數(shù)的底數(shù)).(1)當(dāng)SKIPIF1<0時,討論函數(shù)SKIPIF1<0在SKIPIF1<0上的單調(diào)性;(2)若對一切SKIPIF1<0,SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增(2)SKIPIF1<0【詳解】(1)當(dāng)SKIPIF1<0時SKIPIF1<0,則SKIPIF1<0.記SKIPIF1<0,則SKIPIF1<0.令SKIPIF1<0,得SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)當(dāng)SKIPIF1<0時,SKIPIF1<0恒成立,即SKIPIF1<0恒成立.①當(dāng)SKIPIF1<0時,SKIPIF1<0,此時SKIPIF1<0.②當(dāng)SKIPIF1<0時,SKIPIF1<0,即SKIPIF1<0記SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,所以SKIPIF1<0,綜上可知,實(shí)數(shù)m的取值范圍為SKIPIF1<0.10.(2023·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0.(1)若曲線SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,求實(shí)數(shù)a,b的值;(2)若SKIPIF1<0,對任意的SKIPIF1<0,且SKIPIF1<0,不等式SKIPIF1<0恒成立,求m的取值范圍.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0.【詳解】(1)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,求導(dǎo)得SKIPIF1<0,由曲線SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.(2)當(dāng)SKIPIF1<0時,函數(shù)SKIPIF1<0,求導(dǎo)得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,即函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,不妨設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,不等式SKIPIF1<0恒成立,即SKIPIF1<0恒成立,則SKIPIF1<0恒成立,設(shè)SKIPIF1<0,于是SKIPIF1<0,SKIPIF1<0恒成立則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,于是SKIPIF1<0在SKIPIF1<0上恒成立,即SKIPIF1<0在SKIPIF1<0上恒成立,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,因此SKIPIF1<0,所以m的取值范圍為SKIPIF1<0.11.(2023下·安徽合肥·高二統(tǒng)考期末)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時,討論SKIPIF1<0在區(qū)間SKIPIF1<0上的單調(diào)性;(2)若當(dāng)SKIPIF1<0時,SKIPIF1<0,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減(2)SKIPIF1<0【詳解】(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.(2)設(shè)SKIPIF1<0,由題意知當(dāng)SKIPIF1<0時,SKIPIF1<0.求導(dǎo)得SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0當(dāng)SKIPIF1<0故函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0;令SKIPIF1<0,可得SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0單調(diào)遞增時,SKIPIF1<0.所以當(dāng)SKIPIF1<0時,SKIPIF1<0.故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時,SKIPIF1<0,且當(dāng)SKIPIF1<0時,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因此SKIPIF1<0,SKIPIF1<0,符合條件.若SKIPIF1<0,則存在SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論