新高考數(shù)學(xué)二輪復(fù)習(xí)熱點(diǎn)5-1 等差數(shù)列的通項(xiàng)及前n項(xiàng)和(8題型+滿(mǎn)分技巧+限時(shí)檢測(cè))(解析版)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)熱點(diǎn)5-1 等差數(shù)列的通項(xiàng)及前n項(xiàng)和(8題型+滿(mǎn)分技巧+限時(shí)檢測(cè))(解析版)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)熱點(diǎn)5-1 等差數(shù)列的通項(xiàng)及前n項(xiàng)和(8題型+滿(mǎn)分技巧+限時(shí)檢測(cè))(解析版)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)熱點(diǎn)5-1 等差數(shù)列的通項(xiàng)及前n項(xiàng)和(8題型+滿(mǎn)分技巧+限時(shí)檢測(cè))(解析版)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)熱點(diǎn)5-1 等差數(shù)列的通項(xiàng)及前n項(xiàng)和(8題型+滿(mǎn)分技巧+限時(shí)檢測(cè))(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

熱點(diǎn)5-1等差數(shù)列的通項(xiàng)及前n項(xiàng)和主要考查等差數(shù)列的基本量計(jì)算和基本性質(zhì)、等差數(shù)列的中項(xiàng)性質(zhì)、判定與證明,這是高考熱點(diǎn);等差數(shù)列的求和及綜合應(yīng)用是高考考查的重點(diǎn)。這部分內(nèi)容難度以中、低檔題為主,結(jié)合等比數(shù)列一般設(shè)置一道選擇題和一道解答題。【題型1等差數(shù)列的基本量計(jì)算】滿(mǎn)分技巧1、等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和公式共涉及五個(gè)量a1,an,d,n,Sn,知其中三個(gè)就能求另外兩個(gè),體現(xiàn)了方程思想.2、數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式在解題中起到變量代換的作用,而a1和d是等差數(shù)列的兩個(gè)基本量,用它們表示已知量和未知量是常用方法.【例1】(2023·四川樂(lè)山·統(tǒng)考一模)設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.63B.51C.45D.27【答案】B【解析】由題意知等差數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,設(shè)首項(xiàng)為SKIPIF1<0,公差為d,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,故選:B【變式1-1】(2023·全國(guó)·高三校聯(lián)考期中)記等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的公差為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,因?yàn)镾KIPIF1<0且SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0.故選:C.【變式1-2】(2023·廣東廣州·高三廣雅中學(xué)??茧A段練習(xí))已知數(shù)列SKIPIF1<0是等差數(shù)列,SKIPIF1<0是其前SKIPIF1<0項(xiàng)和.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值是()A.1B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】設(shè)等差數(shù)列的公差為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故選:C【變式1-3】(2023·湖南衡陽(yáng)·高三衡陽(yáng)市八中校聯(lián)考階段練習(xí))已知等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.【答案】0【解析】設(shè)數(shù)列SKIPIF1<0的公差為d,由已知有SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.【題型2等差數(shù)列性質(zhì)的應(yīng)用】滿(mǎn)分技巧1、在等差數(shù)列{an}中,當(dāng)m≠n時(shí),d=eq\f(am-an,m-n)為公差公式,利用這個(gè)公式很容易求出公差,還可變形為am=an+(m-n)d.2、等差數(shù)列{an}中,每隔相同的項(xiàng)抽出來(lái)的項(xiàng)按照原來(lái)的順序排列,構(gòu)成的新數(shù)列仍然是等差數(shù)列.3、等差數(shù)列{an}中,若m+n=p+q,則an+am=ap+aq(n,m,p,q∈N*),特別地,若m+n=2p,則an+am=2ap.【例2】(2023·全國(guó)·模擬預(yù)測(cè))已知等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.60B.120C.180D.240【答案】C【解析】根據(jù)等差數(shù)列下標(biāo)和性質(zhì)可知SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0.故選:C.【變式2-1】(2023·山東濟(jì)寧·高三統(tǒng)考期中)設(shè)等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0().A.32B.64C.80D.128【答案】B【解析】因?yàn)镾KIPIF1<0是等差數(shù)列,所以SKIPIF1<0,則SKIPIF1<0;又SKIPIF1<0,則SKIPIF1<0;則SKIPIF1<0.故選:B.【變式2-2】(2023·上海·高三??计谥校┮阎獢?shù)列SKIPIF1<0是等差數(shù)列,SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【解析】因?yàn)閿?shù)列SKIPIF1<0是等差數(shù)列,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.【變式2-3】(2023·河南·高三校聯(lián)考期中)(多選)記等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,則根據(jù)下列條件能夠確定SKIPIF1<0的值的是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0D.SKIPIF1<0,SKIPIF1<0【答案】AD【解析】SKIPIF1<0,所以A正確,由于SKIPIF1<0,結(jié)合SKIPIF1<0,所以B錯(cuò)誤,對(duì)于C,SKIPIF1<0,SKIPIF1<0,故C錯(cuò)誤,對(duì)于D,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故D正確,故選:AD【題型3等差數(shù)列的單調(diào)性及應(yīng)用】滿(mǎn)分技巧當(dāng)公差SKIPIF1<0時(shí),等差數(shù)列的通項(xiàng)公式SKIPIF1<0是關(guān)于SKIPIF1<0的一次函數(shù),且一次項(xiàng)系數(shù)為公差SKIPIF1<0.若公差SKIPIF1<0,則為遞增數(shù)列,若公差SKIPIF1<0,則為遞減數(shù)列.【例3】(2022·廣東惠州·統(tǒng)考一模)設(shè)等差數(shù)列SKIPIF1<0的公差為d,若SKIPIF1<0,則“SKIPIF1<0”是“SKIPIF1<0(SKIPIF1<0)”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件【答案】C【解析】充分性:若SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,所以充分性成立;必要性:若SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,則SKIPIF1<0,必要性成立.因此,“SKIPIF1<0”是“SKIPIF1<0”的充要條件.故選:C.【變式3-1】(2023·吉林白山·撫松縣第一中學(xué)??寄M預(yù)測(cè))若等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且滿(mǎn)足SKIPIF1<0,對(duì)任意正整數(shù)SKIPIF1<0,都有SKIPIF1<0,則SKIPIF1<0的值為()A.2020B.2021C.2022D.2023【答案】C【解析】依題意SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0則SKIPIF1<0,且SKIPIF1<0,所以等差數(shù)列SKIPIF1<0單調(diào)遞減,SKIPIF1<0,所以對(duì)任意正整數(shù)SKIPIF1<0,都有SKIPIF1<0,則SKIPIF1<0.故選,C.【變式3-2】(2022·湖北襄陽(yáng)·高二校考階段練習(xí))(多選)設(shè)等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則下列結(jié)論正確的是()A.?dāng)?shù)列SKIPIF1<0是遞減數(shù)列B.SKIPIF1<0C.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0D.SKIPIF1<0【答案】ABCD【解析】若SKIPIF1<0,可得SKIPIF1<0,可得B正確;SKIPIF1<0SKIPIF1<0故數(shù)列為遞減數(shù)列,故A正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)閿?shù)列是遞減數(shù)列,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故C正確;SKIPIF1<0,故D正確;故選:ABCD.【變式3-3】(2023·黑龍江·高三校聯(lián)考階段練習(xí))(多選)若數(shù)列SKIPIF1<0是等差數(shù)列,公差SKIPIF1<0,則下列對(duì)數(shù)列SKIPIF1<0的判斷正確的是()A.若SKIPIF1<0,則數(shù)列SKIPIF1<0是遞減數(shù)列B.若SKIPIF1<0,則數(shù)列SKIPIF1<0是遞增數(shù)列C.若SKIPIF1<0,則數(shù)列SKIPIF1<0是公差為d的等差數(shù)列D.若SKIPIF1<0,則數(shù)列SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列【答案】AD【解析】由SKIPIF1<0且SKIPIF1<0,A:由SKIPIF1<0,即數(shù)列SKIPIF1<0是遞減數(shù)列,對(duì);B:由SKIPIF1<0,若SKIPIF1<0時(shí),如SKIPIF1<0,SKIPIF1<0不單調(diào),錯(cuò);C:由SKIPIF1<0,則數(shù)列SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列,錯(cuò);D:由SKIPIF1<0,則數(shù)列SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列,對(duì).故選:AD【題型4等差數(shù)列前n項(xiàng)和性質(zhì)應(yīng)用】滿(mǎn)分技巧1、等差數(shù)列的依次k項(xiàng)之和,Sk,S2k-Sk,S3k-S2k,…組成公差為k2d的等差數(shù)列.2、數(shù)列{an}是等差數(shù)列?Sn=an2+bn(a,b為常數(shù))?數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))為等差數(shù)列.3、若S奇表示奇數(shù)項(xiàng)的和,S偶表示偶數(shù)項(xiàng)的和,公差為d,①當(dāng)項(xiàng)數(shù)為偶數(shù)2n時(shí),S偶-S奇=nd,eq\f(S奇,S偶)=eq\f(an,an+1);②當(dāng)項(xiàng)數(shù)為奇數(shù)2n-1時(shí),S奇-S偶=an,eq\f(S奇,S偶)=eq\f(n,n-1).【例4】(2024·四川宜賓·南溪第一中學(xué)校??寄M預(yù)測(cè))已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,因?yàn)镾KIPIF1<0,可知SKIPIF1<0是以首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故選:D.【變式4-1】(2023·湖北荊州·高三松滋市第一中學(xué)??茧A段練習(xí))等差數(shù)列SKIPIF1<0、SKIPIF1<0的前SKIPIF1<0項(xiàng)和分別為SKIPIF1<0與SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】由等差數(shù)列性質(zhì)得,SKIPIF1<0,等差數(shù)列SKIPIF1<0前n項(xiàng)和滿(mǎn)足SKIPIF1<0,則SKIPIF1<0,等差數(shù)列SKIPIF1<0前n項(xiàng)和滿(mǎn)足SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故選:B.【變式4-2】(2023·海南·校聯(lián)考模擬預(yù)測(cè))等差數(shù)列SKIPIF1<0前SKIPIF1<0項(xiàng)和分別為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【解析】由等差數(shù)列性質(zhì)可得SKIPIF1<0,解得SKIPIF1<0.【變式4-3】(2023·安徽安慶·高三安徽省太湖中學(xué)??茧A段練習(xí))(多選)已知SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0和,下列說(shuō)法正確的是()A.若數(shù)列SKIPIF1<0為等差數(shù)列,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為等差數(shù)列B.若SKIPIF1<0為等比數(shù)列,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為等比數(shù)列C.若SKIPIF1<0為等差數(shù)列,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為等差數(shù)列D.若SKIPIF1<0為等比數(shù)列,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為等比數(shù)列【答案】AC【解析】對(duì)于B和D,當(dāng)公比SKIPIF1<0時(shí),且m為偶數(shù)時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不為等比數(shù)列;SKIPIF1<0,此時(shí)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不為等比數(shù)列,則B和D錯(cuò)誤;對(duì)于A,若數(shù)列SKIPIF1<0為等差數(shù)列,設(shè)公差為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由等差數(shù)列片段和性質(zhì)知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為等差數(shù)列,公差為SKIPIF1<0,A正確;對(duì)于C,若SKIPIF1<0為等差數(shù)列,設(shè)公差為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為等差數(shù)列,C正確;故選:SKIPIF1<0【題型5等差數(shù)列前n項(xiàng)和的最值問(wèn)題】滿(mǎn)分技巧1、二次函數(shù)法:將Sn=na1+eq\f(nn-1,2)d=eq\f(d,2)n2+eq\b\lc\(\rc\)(\a\vs4\al\co1(a1-\f(d,2)))n配方.轉(zhuǎn)化為求二次函數(shù)的最值問(wèn)題,但要注意n∈N*,結(jié)合二次函數(shù)圖象的對(duì)稱(chēng)性來(lái)確定n的值,更加直觀.2、鄰項(xiàng)變號(hào)法:當(dāng)a1>0,d<0,eq\b\lc\{\rc\(\a\vs4\al\co1(an≥0,,an+1≤0))時(shí),Sn取得最大值;當(dāng)a1<0,d>0,eq\b\lc\{\rc\(\a\vs4\al\co1(an≤0,,an+1≥0))時(shí),Sn取得最小值.特別地,若a1>0,d>0,則S1是{Sn}的最小值;若a1<0,d<0,則S1是{Sn}的最大值.【例5】(2023·貴州·高三貴陽(yáng)一中校考階段練習(xí))已知SKIPIF1<0是等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,且SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最大值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】設(shè)數(shù)列SKIPIF1<0的首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,又由SKIPIF1<0,可得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,可得等差數(shù)列SKIPIF1<0為遞減數(shù)列,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0最大值為SKIPIF1<0.故選;A.【變式5-1】(2023·黑龍江·高三省實(shí)驗(yàn)中學(xué)??茧A段練習(xí))等差數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0則SKIPIF1<0的最大值為()A.60B.45C.30D.15【答案】B【解析】因?yàn)镾KIPIF1<0則SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得:SKIPIF1<0,因?yàn)镾KIPIF1<0是等差數(shù)列,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0的最大值為SKIPIF1<0.故選:B.【變式5-2】(2023·江蘇無(wú)錫·高三江陰市第一中學(xué)??茧A段練習(xí))(多選)遞增等差數(shù)列SKIPIF1<0,滿(mǎn)足SKIPIF1<0,前n項(xiàng)和為SKIPIF1<0,下列選項(xiàng)正確的是()A.SKIPIF1<0B.SKIPIF1<0C.當(dāng)SKIPIF1<0時(shí)SKIPIF1<0最小D.SKIPIF1<0時(shí)n的最小值為8【答案】ABD【解析】A、B:由題意可設(shè)等差數(shù)列SKIPIF1<0的公差為d,因?yàn)镾KIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,又由等差數(shù)列SKIPIF1<0是遞增數(shù)列,可知SKIPIF1<0,則SKIPIF1<0,故A,B正確.C:SKIPIF1<0,由SKIPIF1<0得,當(dāng)SKIPIF1<0或4時(shí)SKIPIF1<0最小,故C錯(cuò)誤.D:令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0時(shí)n的最小值為8,故D正確.故選:ABD.【變式5-3】(2023·河北石家莊·高三新樂(lè)市第一中學(xué)??奸_(kāi)學(xué)考試)(多選)已知等差數(shù)列SKIPIF1<0,其前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則下列結(jié)論正確的是()A.SKIPIF1<0B.使SKIPIF1<0的SKIPIF1<0的最大值為SKIPIF1<0C.公差SKIPIF1<0D.當(dāng)SKIPIF1<0時(shí)SKIPIF1<0最大【答案】ACD【解析】SKIPIF1<0等差數(shù)列SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,A正確.SKIPIF1<0,C正確.SKIPIF1<0,SKIPIF1<0使SKIPIF1<0的n的最大值為SKIPIF1<0.B錯(cuò)誤.SKIPIF1<0當(dāng)SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí)SKIPIF1<0最大.D正確.故選:ACD【題型6含絕對(duì)值的等差數(shù)列求和】【例6】(2023·上?!じ呷?计谥校┰诠顬镾KIPIF1<0的等差數(shù)列SKIPIF1<0中,已知SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列.(1)求SKIPIF1<0,SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0.【答案】(1)SKIPIF1<0時(shí)SKIPIF1<0,SKIPIF1<0時(shí)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)公差為SKIPIF1<0的等差數(shù)列SKIPIF1<0中,已知SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列.所以SKIPIF1<0,即SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(2)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故SKIPIF1<0.又SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去).所以SKIPIF1<0.【變式6-1】(2023·江蘇淮安·高三江蘇省清浦中學(xué)校聯(lián)考階段練習(xí))已知SKIPIF1<0是等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式與前SKIPIF1<0項(xiàng)和SKIPIF1<0;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0.所以數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.(2)由SKIPIF1<0得SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0;由SKIPIF1<0得SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0.所以,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0.所以,SKIPIF1<0.【變式6-2】(2023·云南·高三校聯(lián)考階段練習(xí))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式(2)若SKIPIF1<0,求SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)由SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,適合上式,所以數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.(2)由SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.【變式6-3】(2023·重慶·萬(wàn)州第三中學(xué)校考模擬預(yù)測(cè))已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,設(shè)SKIPIF1<0,求SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【解析】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0滿(mǎn)足上式,所以數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.(2)由(1)知SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0;所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0遞減,所以SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,此時(shí)SKIPIF1<0單調(diào)遞增,令SKIPIF1<0得SKIPIF1<0,此時(shí)SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0時(shí)遞減,在SKIPIF1<0時(shí)遞增,而SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0;綜上,SKIPIF1<0的最小值為SKIPIF1<0.【題型7等差數(shù)列的判定與證明】滿(mǎn)分技巧1、定義法:SKIPIF1<0或SKIPIF1<0SKIPIF1<0是等差數(shù)列;2、定義變形法:驗(yàn)證是否滿(mǎn)足SKIPIF1<0;3、等差中項(xiàng)法:SKIPIF1<0為等差數(shù)列;4、通項(xiàng)公式法:通項(xiàng)公式形如SKIPIF1<0為常數(shù)SKIPIF1<0SKIPIF1<0為等差數(shù)列;5、前n項(xiàng)和公式法:SKIPIF1<0為常數(shù)SKIPIF1<0SKIPIF1<0為等差數(shù)列.注意:(1)若判斷一個(gè)數(shù)列不是等差數(shù)列,只需找出三項(xiàng)SKIPIF1<0,使得SKIPIF1<0即可;(2)如果要證明一個(gè)數(shù)列是等差數(shù)列,則必須用定義法或等差中項(xiàng)法.【例7】(2023·廣東深圳·高三??茧A段練習(xí))已知公比大于1的等比數(shù)列SKIPIF1<0滿(mǎn)足:SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)記數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,證明:SKIPIF1<0是等差數(shù)列.【答案】(1)SKIPIF1<0;(2)證明見(jiàn)解析【解析】(1)方法1:設(shè)公比為SKIPIF1<0,因?yàn)镾KIPIF1<0是等比數(shù)列,所以SKIPIF1<0,又SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.因此SKIPIF1<0;方法2:設(shè)公比為SKIPIF1<0,由等比數(shù)列性質(zhì)得出SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,因此SKIPIF1<0.(2)由(1)得SKIPIF1<0,所以SKIPIF1<0,兩式作差可得SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,SKIPIF1<0.方程同除以SKIPIF1<0得,SKIPIF1<0,即SKIPIF1<0(SKIPIF1<0).所以數(shù)列SKIPIF1<0是公差為SKIPIF1<0的等差數(shù)列.【變式7-1】(2023·黑龍江·高三佳木斯一中校考階段練習(xí))已知數(shù)列SKIPIF1<0的首項(xiàng)為SKIPIF1<0,前SKIPIF1<0項(xiàng)和為SKIPIF1<0.已知SKIPIF1<0.(1)證明:SKIPIF1<0是等差數(shù)列;(2)若SKIPIF1<0成等比數(shù)列,求SKIPIF1<0的最小值及取到最小值時(shí)SKIPIF1<0的值.【答案】(1)證明見(jiàn)解析;(2)SKIPIF1<0或SKIPIF1<0時(shí)SKIPIF1<0.【解析】(1)證明:因?yàn)镾KIPIF1<0①,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0②,①-②得,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0是以1為公差的等差數(shù)列.(2)由(1)可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0成等比數(shù)列,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí)SKIPIF1<0.【變式7-2】(2023·遼寧·高三校聯(lián)考期中)設(shè)數(shù)列SKIPIF1<0的各項(xiàng)都為正數(shù),且SKIPIF1<0.(1)證明數(shù)列SKIPIF1<0為等差數(shù)列;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)證明見(jiàn)解析;(2)SKIPIF1<0【解析】(1)由數(shù)列SKIPIF1<0的各項(xiàng)都為正數(shù),且SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,所以數(shù)列SKIPIF1<0是以SKIPIF1<0為公差的等差數(shù)列;(2)SKIPIF1<0,由(1)得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.【變式7-3】(2023·廣東廣州·高三華南師大附中??茧A段練習(xí))已知正項(xiàng)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0SKIPIF1<0,滿(mǎn)足SKIPIF1<0.(1)證明:數(shù)列SKIPIF1<0為等差數(shù)列;(2)設(shè)數(shù)列SKIPIF1<0,求數(shù)列SKIPIF1<0前SKIPIF1<0項(xiàng)和SKIPIF1<0的值.【答案】(1)證明見(jiàn)解析;(2)SKIPIF1<0【解析】(1)由SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,整理SKIPIF1<0,又?jǐn)?shù)列SKIPIF1<0為正項(xiàng)數(shù)列,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),SKIPIF1<0為公差的等差數(shù)列,所以SKIPIF1<0;(2)由(1)得SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.【題型8等差數(shù)列的實(shí)際應(yīng)用】【例8】(2023·海南??凇ばB?lián)考一模)家庭農(nóng)場(chǎng)是指以農(nóng)戶(hù)家庭成員為主要?jiǎng)趧?dòng)力的新型農(nóng)業(yè)經(jīng)營(yíng)主體.某家庭農(nóng)場(chǎng)從2019年開(kāi)始逐年加大投入,加大投入后每年比前一年增加相同額度的收益,已知2019年的收益為30萬(wàn)元,2021年的收益為50萬(wàn)元.照此規(guī)律,從2019年至2026年該家庭農(nóng)場(chǎng)的總收益為()A.630萬(wàn)元B.350萬(wàn)元C.420萬(wàn)元D.520萬(wàn)元【答案】D【解析】依題意,該家庭農(nóng)場(chǎng)每年收益依次成等差數(shù)列,設(shè)為SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,所以公差為SKIPIF1<0,所以2019年至2026年該家庭農(nóng)場(chǎng)的總收益為SKIPIF1<0,故選:D【變式8-1】(2023·黑龍江齊齊哈爾·統(tǒng)考一模)SKIPIF1<0基站建設(shè)是眾多“新基建”的工程之一,截至SKIPIF1<0年SKIPIF1<0月底,SKIPIF1<0地區(qū)已經(jīng)累計(jì)開(kāi)通SKIPIF1<0基站SKIPIF1<0個(gè),未來(lái)將進(jìn)一步完善基礎(chǔ)網(wǎng)絡(luò)體系,加快推進(jìn)SKIPIF1<0網(wǎng)絡(luò)建設(shè).已知SKIPIF1<0年SKIPIF1<0月該地區(qū)計(jì)劃新建SKIPIF1<0個(gè)SKIPIF1<0基站,以后每個(gè)月比上一個(gè)月多建SKIPIF1<0個(gè),則SKIPIF1<0地區(qū)到SKIPIF1<0年SKIPIF1<0月底累計(jì)開(kāi)通SKIPIF1<0基站的個(gè)數(shù)為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】由題意得,SKIPIF1<0年SKIPIF1<0月及之后該地區(qū)每個(gè)月建設(shè)的SKIPIF1<0基站數(shù)量為等差數(shù)列,且公差為SKIPIF1<0,則到SKIPIF1<0年SKIPIF1<0月底要經(jīng)過(guò)SKIPIF1<0個(gè)月,預(yù)計(jì)SKIPIF1<0地區(qū)到SKIPIF1<0年SKIPIF1<0月底累計(jì)可開(kāi)通SKIPIF1<0個(gè)SKIPIF1<0基站.故選:D.【變式8-2】(2023·江西·校聯(lián)考模擬預(yù)測(cè))天干地支紀(jì)年法源于中國(guó),中國(guó)自古便有十天干與十二地支.十天干即:甲、乙、丙、丁、戊、己、庚、辛、壬、癸;十二地支即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支紀(jì)年法是按順序以一個(gè)天干和一個(gè)地支相配,排列起來(lái),天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年為“甲子”,第二年為“乙丑”,第三年為“丙寅”,…,以此類(lèi)推,排列到“癸酉”后,天干回到“甲”重新開(kāi)始,即“甲戌”,“乙亥”,之后地支回到“子”重新開(kāi)始,即“丙子”,…,以此類(lèi)推,2023年是癸卯年,請(qǐng)問(wèn):在100年后的2123年為()A.癸未年B.辛丑年C.己亥年D.戊戌年【答案】A【解析】由題意得:天干可看作公差為10的等差數(shù)列,地支可看作公差為12的等差數(shù)列,由于SKIPIF1<0,余數(shù)為0,故100年后天干為癸,由于SKIPIF1<0,余數(shù)為4,故100年后地支為未,綜上:100年后的2123年為癸未年.故選:A.【變式8-3】(2022·江蘇南通·高三統(tǒng)考期中)(多選)在我國(guó)古代著名的數(shù)學(xué)專(zhuān)著《九章算術(shù)》里有一段敘述:今有良馬與駑馬發(fā)長(zhǎng)安至齊,齊去長(zhǎng)安一千一百二十五里,良馬初日行一百零三里,日增十三里;駑馬初日行九十七里,日減半里;良馬先至齊,復(fù)還迎駑馬,二馬相逢.則()A.駑馬第七日行九十四里B.第七日良馬先至齊C.第八日二馬相逢D.二馬相逢時(shí)良馬行一千三百九十五里【答案】AD【解析】由題意可知,兩馬日行里數(shù)都成等差數(shù)列;記數(shù)列SKIPIF1<0為良馬的日行里數(shù),其中首項(xiàng)SKIPIF1<0公差SKIPIF1<0所以數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0記數(shù)列SKIPIF1<0為駑馬的日行里數(shù),其中首項(xiàng)SKIPIF1<0公差SKIPIF1<0所以數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0因此,對(duì)于A,駑馬第七日行里數(shù)為SKIPIF1<0,即駑馬第七日行九十四里;故A正確;第七日良馬行走總里程為SKIPIF1<0,而齊去長(zhǎng)安一千一百二十五里,因?yàn)镾KIPIF1<0,所以第七日良馬未至齊;所以B錯(cuò)誤;設(shè)第SKIPIF1<0日兩馬相逢,由題意可知兩馬行走的總里數(shù)是齊去長(zhǎng)安距離的兩倍,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍),即第九日二馬相逢;故C錯(cuò)誤;由C可知,第九日二馬相逢,此時(shí)良馬共行走了SKIPIF1<0,所以,二馬相逢時(shí)良馬行一千三百九十五里,所以D正確;故選:AD.(建議用時(shí):60分鐘)1.(2023·四川樂(lè)山·統(tǒng)考一模)設(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.18B.27C.45D.63【答案】C【解析】由題意得SKIPIF1<0成等差數(shù)列,即SKIPIF1<0成等差數(shù)列,即SKIPIF1<0,解得SKIPIF1<0.故選:C2.(2023·重慶渝中·高三統(tǒng)考期中)已知數(shù)列SKIPIF1<0均為等差數(shù)列,且SKIPIF1<0,設(shè)數(shù)列SKIPIF1<0前SKIPIF1<0項(xiàng)的和為SKIPIF1<0,則SKIPIF1<0()A.84B.540C.780D.920【答案】D【解析】根據(jù)題意可設(shè)數(shù)列SKIPIF1<0的公差分別為SKIPIF1<0;由SKIPIF1<0可知SKIPIF1<0,即可知數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),公差為SKIPIF1<0的等差數(shù)列,所以可得SKIPIF1<0,即可得SKIPIF1<0,所以SKIPIF1<0.故選:D3.(2023·全國(guó)·模擬預(yù)測(cè))已知數(shù)列SKIPIF1<0為等差數(shù)列,其前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.63B.72C.135D.144【答案】C【解析】設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0.又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:C.4.(2023·北京·高三順義區(qū)第一中學(xué)??茧A段練習(xí))若等差數(shù)列SKIPIF1<0和等比數(shù)列SKIPIF1<0滿(mǎn)足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的公差為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以,SKIPIF1<0,故SKIPIF1<0.故選:D.5.(2023·海南·高三海南中學(xué)校考階段練習(xí))在等差數(shù)列SKIPIF1<0中,SKIPIF1<0,其前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的值等于(

)A.SKIPIF1<0B.SKIPIF1<0C.2023D.2024【答案】B【解析】設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,SKIPIF1<0,所以數(shù)列SKIPIF1<0是等差數(shù)列,公差為SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0.故選:B.6.(2023·河南·高三南陽(yáng)中學(xué)校聯(lián)考階段練習(xí))已知數(shù)列SKIPIF1<0滿(mǎn)足:SKIPIF1<0,且SKIPIF1<0.若SKIPIF1<0恒成立,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0.由題知,SKIPIF1<0,即SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,且SKIPIF1<0不為0.所以SKIPIF1<0,所以數(shù)列SKIPIF1<0是等差數(shù)列.因?yàn)镾KIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,即公差SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:C.7.(2023·江西南昌·高三江西師大附中??计谥校┰O(shè)等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,已知SKIPIF1<0,SKIPIF1<0,則下列結(jié)論中正確的是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】設(shè)SKIPIF1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論