版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知f(x)=是定義在R上的奇函數(shù),則不等式f(x-3)<f(9-x2)的解集為()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)2.執(zhí)行如圖所示的程序框圖,若輸出的值為8,則框圖中①處可以填().A. B. C. D.3.已知點(diǎn)為雙曲線的右焦點(diǎn),直線與雙曲線交于A,B兩點(diǎn),若,則的面積為()A. B. C. D.4.拋擲一枚質(zhì)地均勻的硬幣,每次正反面出現(xiàn)的概率相同,連續(xù)拋擲5次,至少連續(xù)出現(xiàn)3次正面朝上的概率是()A. B. C. D.5.函數(shù)的最小正周期是,則其圖象向左平移個(gè)單位長(zhǎng)度后得到的函數(shù)的一條對(duì)稱軸是()A. B. C. D.6.如圖,雙曲線的左,右焦點(diǎn)分別是直線與雙曲線的兩條漸近線分別相交于兩點(diǎn).若則雙曲線的離心率為()A. B.C. D.7.已知為圓的一條直徑,點(diǎn)的坐標(biāo)滿足不等式組則的取值范圍為()A. B.C. D.8.已知整數(shù)滿足,記點(diǎn)的坐標(biāo)為,則點(diǎn)滿足的概率為()A. B. C. D.9.已知函數(shù)是奇函數(shù),則的值為()A.-10 B.-9 C.-7 D.110.設(shè)函數(shù),的定義域都為,且是奇函數(shù),是偶函數(shù),則下列結(jié)論正確的是()A.是偶函數(shù) B.是奇函數(shù)C.是奇函數(shù) D.是奇函數(shù)11.已知為圓:上任意一點(diǎn),,若線段的垂直平分線交直線于點(diǎn),則點(diǎn)的軌跡方程為()A. B.C.() D.()12.在函數(shù):①;②;③;④中,最小正周期為的所有函數(shù)為()A.①②③ B.①③④ C.②④ D.①③二、填空題:本題共4小題,每小題5分,共20分。13.某校共有師生1600人,其中教師有1000人,現(xiàn)用分層抽樣的方法,從所有師生中抽取一個(gè)容量為80的樣本,則抽取學(xué)生的人數(shù)為_(kāi)____.14.已知雙曲線(a>0,b>0)的一條漸近線方程為,則該雙曲線的離心率為_(kāi)______.15.動(dòng)點(diǎn)到直線的距離和他到點(diǎn)距離相等,直線過(guò)且交點(diǎn)的軌跡于兩點(diǎn),則以為直徑的圓必過(guò)_________.16.已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,P為C上一點(diǎn),PQ垂直l于點(diǎn)Q,M,N分別為PQ,PF的中點(diǎn),MN與x軸相交于點(diǎn)R,若∠NRF=60°,則|FR|等于_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)對(duì)于很多人來(lái)說(shuō),提前消費(fèi)的認(rèn)識(shí)首先是源于信用卡,在那個(gè)工資不高的年代,信用卡絕對(duì)是神器,稍微大件的東西都是可以選擇用信用卡來(lái)買,甚至于分期買,然后慢慢還!現(xiàn)在銀行貸款也是很風(fēng)靡的,從房貸到車貸到一般的現(xiàn)金貸.信用卡“忽如一夜春風(fēng)來(lái)”,遍布了各大小城市的大街小巷.為了解信用卡在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了100人進(jìn)行抽樣分析,得到如下列聯(lián)表(單位:人)經(jīng)常使用信用卡偶爾或不用信用卡合計(jì)40歲及以下15355040歲以上203050合計(jì)3565100(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為市使用信用卡情況與年齡有關(guān)?(2)①現(xiàn)從所抽取的40歲及以下的網(wǎng)民中,按“經(jīng)常使用”與“偶爾或不用”這兩種類型進(jìn)行分層抽樣抽取10人,然后,再?gòu)倪@10人中隨機(jī)選出4人贈(zèng)送積分,求選出的4人中至少有3人偶爾或不用信用卡的概率;②將頻率視為概率,從市所有參與調(diào)查的40歲以上的網(wǎng)民中隨機(jī)抽取3人贈(zèng)送禮品,記其中經(jīng)常使用信用卡的人數(shù)為,求隨機(jī)變量的分布列、數(shù)學(xué)期望和方差.參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0102.0722.7063.8415.0246.63518.(12分)如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點(diǎn).(Ⅰ)求證:平面平面;(ⅠⅠ)求直線與平面所成的角的正弦值.19.(12分)某芯片公司為制定下一年的研發(fā)投入計(jì)劃,需了解年研發(fā)資金投入量x(單位:億元)對(duì)年銷售額y(單位:億元)的影響.該公司對(duì)歷史數(shù)據(jù)進(jìn)行對(duì)比分析,建立了兩個(gè)函數(shù)模型:①y=α+βx2,②y=eλx+t,其中現(xiàn)該公司收集了近12年的年研發(fā)資金投入量xi和年銷售額yi的數(shù)據(jù),i=1,2,?,12,并對(duì)這些數(shù)據(jù)作了初步處理,得到了右側(cè)的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.令xyi=1i=1uv20667702004604.20i=1i=1i=1i=13125000215000.30814(1)設(shè)ui和yi的相關(guān)系數(shù)為r1,xi和(2)(i)根據(jù)(1)的選擇及表中數(shù)據(jù),建立y關(guān)于x的回歸方程(系數(shù)精確到0.01);(ii)若下一年銷售額y需達(dá)到90億元,預(yù)測(cè)下一年的研發(fā)資金投入量x是多少億元?附:①相關(guān)系數(shù)r=i=1n(xi-x②參考數(shù)據(jù):308=4×77,90≈9.4868,e20.(12分)已知在平面直角坐標(biāo)系中,橢圓的焦點(diǎn)為為橢圓上任意一點(diǎn),且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若直線交橢圓于兩點(diǎn),且滿足(分別為直線的斜率),求的面積為時(shí)直線的方程.21.(12分)2019年12月以來(lái),湖北省武漢市持續(xù)開(kāi)展流感及相關(guān)疾病監(jiān)測(cè),發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID—19),簡(jiǎn)稱“新冠肺炎”.下圖是2020年1月15日至1月24日累計(jì)確診人數(shù)隨時(shí)間變化的散點(diǎn)圖.為了預(yù)測(cè)在未釆取強(qiáng)力措施下,后期的累計(jì)確診人數(shù),建立了累計(jì)確診人數(shù)y與時(shí)間變量t的兩個(gè)回歸模型,根據(jù)1月15日至1月24日的數(shù)據(jù)(時(shí)間變量t的值依次1,2,…,10)建立模型和.(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)適宜作為累計(jì)確診人數(shù)y與時(shí)間變量t的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)(2根據(jù)(1)的判斷結(jié)果及附表中數(shù)據(jù),建立y關(guān)于x的回歸方程;(3)以下是1月25日至1月29日累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù),根據(jù)(2)的結(jié)果回答下列問(wèn)題:時(shí)間1月25日1月26日1月27日1月28日1月29日累計(jì)確診人數(shù)的真實(shí)數(shù)據(jù)19752744451559747111(?。┊?dāng)1月25日至1月27日這3天的誤差(模型預(yù)測(cè)數(shù)據(jù)與真實(shí)數(shù)據(jù)差值的絕對(duì)值與真實(shí)數(shù)據(jù)的比值)都小于0.1則認(rèn)為模型可靠,請(qǐng)判斷(2)的回歸方程是否可靠?(ⅱ)2020年1月24日在人民政府的強(qiáng)力領(lǐng)導(dǎo)下,全國(guó)人民共同采取了強(qiáng)力的預(yù)防“新冠肺炎”的措施,若采取措施5天后,真實(shí)數(shù)據(jù)明顯低于預(yù)測(cè)數(shù)據(jù),則認(rèn)為防護(hù)措施有效,請(qǐng)判斷預(yù)防措施是否有效?附:對(duì)于一組數(shù)據(jù)(,,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.參考數(shù)據(jù):其中,.5.53901938576403152515470010015022533850722.(10分)如圖,在直三棱柱中,,點(diǎn)分別為和的中點(diǎn).(Ⅰ)棱上是否存在點(diǎn)使得平面平面?若存在,寫(xiě)出的長(zhǎng)并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.(Ⅱ)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
由奇函數(shù)的性質(zhì)可得,進(jìn)而可知在R上為增函數(shù),轉(zhuǎn)化條件得,解一元二次不等式即可得解.【詳解】因?yàn)槭嵌x在R上的奇函數(shù),所以,即,解得,即,易知在R上為增函數(shù).又,所以,解得.故選:C.【點(diǎn)睛】本題考查了函數(shù)單調(diào)性和奇偶性的應(yīng)用,考查了一元二次不等式的解法,屬于中檔題.2.C【解析】
根據(jù)程序框圖寫(xiě)出幾次循環(huán)的結(jié)果,直到輸出結(jié)果是8時(shí).【詳解】第一次循環(huán):第二次循環(huán):第三次循環(huán):第四次循環(huán):第五次循環(huán):第六次循環(huán):第七次循環(huán):第八次循環(huán):所以框圖中①處填時(shí),滿足輸出的值為8.故選:C【點(diǎn)睛】此題考查算法程序框圖,根據(jù)循環(huán)條件依次寫(xiě)出每次循環(huán)結(jié)果即可解決,屬于簡(jiǎn)單題目.3.D【解析】
設(shè)雙曲線C的左焦點(diǎn)為,連接,由對(duì)稱性可知四邊形是平行四邊形,設(shè),得,求出的值,即得解.【詳解】設(shè)雙曲線C的左焦點(diǎn)為,連接,由對(duì)稱性可知四邊形是平行四邊形,所以,.設(shè),則,又.故,所以.故選:D【點(diǎn)睛】本題主要考查雙曲線的簡(jiǎn)單幾何性質(zhì),考查余弦定理解三角形和三角形面積的計(jì)算,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.4.A【解析】
首先求出樣本空間樣本點(diǎn)為個(gè),再利用分類計(jì)數(shù)原理求出三個(gè)正面向上為連續(xù)的3個(gè)“1”的樣本點(diǎn)個(gè)數(shù),再求出重復(fù)數(shù)量,可得事件的樣本點(diǎn)數(shù),根據(jù)古典概型的概率計(jì)算公式即可求解.【詳解】樣本空間樣本點(diǎn)為個(gè),具體分析如下:記正面向上為1,反面向上為0,三個(gè)正面向上為連續(xù)的3個(gè)“1”,有以下3種位置1____,__1__,____1.剩下2個(gè)空位可是0或1,這三種排列的所有可能分別都是,但合并計(jì)算時(shí)會(huì)有重復(fù),重復(fù)數(shù)量為,事件的樣本點(diǎn)數(shù)為:個(gè).故不同的樣本點(diǎn)數(shù)為8個(gè),.故選:A【點(diǎn)睛】本題考查了分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,古典概型的概率計(jì)算公式,屬于基礎(chǔ)題5.D【解析】
由三角函數(shù)的周期可得,由函數(shù)圖像的變換可得,平移后得到函數(shù)解析式為,再求其對(duì)稱軸方程即可.【詳解】解:函數(shù)的最小正周期是,則函數(shù),經(jīng)過(guò)平移后得到函數(shù)解析式為,由,得,當(dāng)時(shí),.故選D.【點(diǎn)睛】本題考查了正弦函數(shù)圖像的性質(zhì)及函數(shù)圖像的平移變換,屬基礎(chǔ)題.6.A【解析】
易得,過(guò)B作x軸的垂線,垂足為T,在中,利用即可得到的方程.【詳解】由已知,得,過(guò)B作x軸的垂線,垂足為T,故,又所以,即,所以雙曲線的離心率.故選:A.【點(diǎn)睛】本題考查雙曲線的離心率問(wèn)題,在作雙曲線離心率問(wèn)題時(shí),最關(guān)鍵的是找到的方程或不等式,本題屬于容易題.7.D【解析】
首先將轉(zhuǎn)化為,只需求出的取值范圍即可,而表示可行域內(nèi)的點(diǎn)與圓心距離,數(shù)形結(jié)合即可得到答案.【詳解】作出可行域如圖所示設(shè)圓心為,則,過(guò)作直線的垂線,垂足為B,顯然,又易得,所以,,故.故選:D.【點(diǎn)睛】本題考查與線性規(guī)劃相關(guān)的取值范圍問(wèn)題,涉及到向量的線性運(yùn)算、數(shù)量積、點(diǎn)到直線的距離等知識(shí),考查學(xué)生轉(zhuǎn)化與劃歸的思想,是一道中檔題.8.D【解析】
列出所有圓內(nèi)的整數(shù)點(diǎn)共有37個(gè),滿足條件的有7個(gè),相除得到概率.【詳解】因?yàn)槭钦麛?shù),所以所有滿足條件的點(diǎn)是位于圓(含邊界)內(nèi)的整數(shù)點(diǎn),滿足條件的整數(shù)點(diǎn)有共37個(gè),滿足的整數(shù)點(diǎn)有7個(gè),則所求概率為.故選:.【點(diǎn)睛】本題考查了古典概率的計(jì)算,意在考查學(xué)生的應(yīng)用能力.9.B【解析】
根據(jù)分段函數(shù)表達(dá)式,先求得的值,然后結(jié)合的奇偶性,求得的值.【詳解】因?yàn)楹瘮?shù)是奇函數(shù),所以,.故選:B【點(diǎn)睛】本題主要考查分段函數(shù)的解析式、分段函數(shù)求函數(shù)值,考查數(shù)形結(jié)合思想.意在考查學(xué)生的運(yùn)算能力,分析問(wèn)題、解決問(wèn)題的能力.10.C【解析】
根據(jù)函數(shù)奇偶性的性質(zhì)即可得到結(jié)論.【詳解】解:是奇函數(shù),是偶函數(shù),,,,故函數(shù)是奇函數(shù),故錯(cuò)誤,為偶函數(shù),故錯(cuò)誤,是奇函數(shù),故正確.為偶函數(shù),故錯(cuò)誤,故選:.【點(diǎn)睛】本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關(guān)鍵.11.B【解析】
如圖所示:連接,根據(jù)垂直平分線知,,故軌跡為雙曲線,計(jì)算得到答案.【詳解】如圖所示:連接,根據(jù)垂直平分線知,故,故軌跡為雙曲線,,,,故,故軌跡方程為.故選:.【點(diǎn)睛】本題考查了軌跡方程,確定軌跡方程為雙曲線是解題的關(guān)鍵.12.A【解析】逐一考查所給的函數(shù):,該函數(shù)為偶函數(shù),周期;將函數(shù)圖象x軸下方的圖象向上翻折即可得到的圖象,該函數(shù)的周期為;函數(shù)的最小正周期為;函數(shù)的最小正周期為;綜上可得最小正周期為的所有函數(shù)為①②③.本題選擇A選項(xiàng).點(diǎn)睛:求三角函數(shù)式的最小正周期時(shí),要盡可能地化為只含一個(gè)三角函數(shù)的式子,否則很容易出現(xiàn)錯(cuò)誤.一般地,經(jīng)過(guò)恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
直接根據(jù)分層抽樣的比例關(guān)系得到答案.【詳解】分層抽樣的抽取比例為,∴抽取學(xué)生的人數(shù)為6001.故答案為:1.【點(diǎn)睛】本題考查了分層抽樣的計(jì)算,屬于簡(jiǎn)單題.14.【解析】
根據(jù)題意,由雙曲線的漸近線方程可得,即a=2b,進(jìn)而由雙曲線的幾何性質(zhì)可得cb,由雙曲線的離心率公式計(jì)算可得答案.【詳解】根據(jù)題意,雙曲線的漸近線方程為y=±x,又由該雙曲線的一條漸近線方程為x﹣2y=0,即yx,則有,即a=2b,則cb,則該雙曲線的離心率e;故答案為:.【點(diǎn)睛】本題考查雙曲線的幾何性質(zhì),關(guān)鍵是分析a、b之間的關(guān)系,屬于基礎(chǔ)題.15.【解析】
利用動(dòng)點(diǎn)到直線的距離和他到點(diǎn)距離相等,,可知?jiǎng)狱c(diǎn)的軌跡是以為焦點(diǎn)的拋物線,從而可求曲線的方程,將,代入,利用韋達(dá)定理,可得,從而可知以為直徑的圓經(jīng)過(guò)原點(diǎn)O.【詳解】設(shè)點(diǎn),由題意可得,,,可得,設(shè)直線的方程為,代入拋物線可得,,,,以AB為直徑的圓經(jīng)過(guò)原點(diǎn).故答案為:(0,0)【點(diǎn)睛】本題考查了拋物線的定義,考查了直線和拋物線的交匯問(wèn)題,同時(shí)考查了方程的思想和韋達(dá)定理,考查了運(yùn)算能力,屬于中檔題.16.2【解析】
由題意知:,,,.由∠NRF=60°,可得為等邊三角形,MF⊥PQ,可得F為HR的中點(diǎn),即求.【詳解】不妨設(shè)點(diǎn)P在第一象限,如圖所示,連接MF,QF.∵拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,P為C上一點(diǎn)∴,.∵M(jìn),N分別為PQ,PF的中點(diǎn),∴,∵PQ垂直l于點(diǎn)Q,∴PQ//OR,∵,∠NRF=60°,∴為等邊三角形,∴MF⊥PQ,易知四邊形和四邊形都是平行四邊形,∴F為HR的中點(diǎn),∴,故答案為:2.【點(diǎn)睛】本題主要考查拋物線的定義,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)不能在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為市使用信用卡情況與年齡有關(guān);(2)①;②分布列見(jiàn)解析,,【解析】
(1)計(jì)算再對(duì)照表格分析即可.(2)①根據(jù)分層抽樣的方法可得經(jīng)常使用信用卡的有人,偶爾或不用信用卡的有人,再根據(jù)超幾何分布的方法計(jì)算3人或4人偶爾或不用信用卡的概率即可.②利用二項(xiàng)分布的特點(diǎn)求解變量的分布列、數(shù)學(xué)期望和方差即可.【詳解】(1)由列聯(lián)表可知,,因?yàn)?所以不能在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為市使用信用卡情況與年齡有關(guān).(2)①依題意,可知所抽取的10名40歲及以下網(wǎng)民中,經(jīng)常使用信用卡的有(人),偶爾或不用信用卡的有(人).則選出的4人中至少有3人偶爾或不用信用卡的概率.②由列聯(lián)表,可知40歲以上的網(wǎng)民中,抽到經(jīng)常使用信用卡的頻率為,將頻率視為概率,即從市市民中任意抽取1人,恰好抽到經(jīng)常使用信用卡的市民的概率為.由題意得,則,,,.故隨機(jī)變量的分布列為:0123故隨機(jī)變量的數(shù)學(xué)期望為,方差為.【點(diǎn)睛】本題主要考查了獨(dú)立性檢驗(yàn)以及超幾何分布與二項(xiàng)分布的知識(shí)點(diǎn),包括分類討論以及二項(xiàng)分布的數(shù)學(xué)期望與方差公式等.屬于中檔題.18.(Ⅰ)詳見(jiàn)解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接交于,得,所以面,又,得面,即可利用面面平行的判定定理,證得結(jié)論;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,求的平面的一個(gè)法向量,利用向量和向量夾角公式,即可求解與平面所成角的正弦值.試題解析:(Ⅰ)連接BD交AC于O,易知O是BD的中點(diǎn),故OG//BE,BE面BEF,OG在面BEF外,所以O(shè)G//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC與OG相交于點(diǎn)O,面ACG有兩條相交直線與面BEF平行,故面ACG∥面BEF;(Ⅱ)如圖,以O(shè)為坐標(biāo)原點(diǎn),分別以O(shè)C、OD、OF為x、y、z軸建立空間直角坐標(biāo)系,則,,,,,,,設(shè)面ABF的法向量為,依題意有,,令,,,,,直線AD與面ABF成的角的正弦值是.19.(1)模型y=eλx+t的擬合程度更好;(2)(i)v=0.02x+3.84【解析】
(1)由相關(guān)系數(shù)求出兩個(gè)系數(shù),比較大小可得;(2)(i)先建立U額R0關(guān)于x的線性回歸方程,從而得出y(ii)把y=90代入(i)中的回歸方程可得x值.【詳解】本小題主要考查回歸分析等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力、運(yùn)算求解能力、抽象概括能力及應(yīng)用意識(shí),考查統(tǒng)計(jì)與概率思想、分類與整合思想,考查數(shù)學(xué)抽象、數(shù)學(xué)運(yùn)算、數(shù)學(xué)建模、數(shù)據(jù)分析等核心素養(yǎng),體現(xiàn)基礎(chǔ)性、綜合性與應(yīng)用性.解:(1)r1r2則r1<r(2)(i)先建立U額R0由y=eλx+t,得lny=t+λx由于λ=i=1t=所以U額R0關(guān)于x所以lny=0.02x+3.84(ii)下一年銷售額y需達(dá)到90億元,即y=90,代入y=e0.02x+3.84又e4.4998≈90,所以所以x≈4.4998-3.84所以預(yù)測(cè)下一年的研發(fā)資金投入量約是32.99億元【點(diǎn)睛】本小題主要考查拋物線的定義、拋物線的標(biāo)準(zhǔn)方程、直線與拋物線的位置關(guān)系、導(dǎo)數(shù)幾何意義等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查函數(shù)與方程思想、化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想等,考查數(shù)學(xué)運(yùn)算、直觀想象、邏輯推理等核心素養(yǎng),體現(xiàn)基礎(chǔ)性、綜合性與應(yīng)用性20.(1)(2)或【解析】
(1)根據(jù)橢圓定義求得,得橢圓方程;(2)設(shè),由得,應(yīng)用韋達(dá)定理得,代入已知條件可得,再由橢圓中弦長(zhǎng)公式求得弦長(zhǎng),原點(diǎn)到直線的距離,得三角形面積,從而可求得,得直線方程.【詳解】解:(1)據(jù)題意設(shè)橢圓的方程為則橢圓的標(biāo)準(zhǔn)方程為.(2)據(jù)得設(shè),則又原點(diǎn)到直線的距離解得或所求直線的方程為或【點(diǎn)睛】本
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 技術(shù)服務(wù)合同協(xié)議
- 門業(yè)產(chǎn)品咨詢購(gòu)銷合同
- 鋼筋作業(yè)分包工程協(xié)議書(shū)
- 房屋買賣擔(dān)保合同詳解
- 2024年標(biāo)準(zhǔn)貨品運(yùn)輸協(xié)議3篇
- 冷凍庫(kù)租賃合同范本
- 競(jìng)選體育部長(zhǎng)演講稿四篇
- 分期付款貸款合同案例
- 食堂承包補(bǔ)充協(xié)議風(fēng)險(xiǎn)評(píng)估
- 2024年度省級(jí)事業(yè)單位資源共享合作協(xié)議3篇
- 高中學(xué)生英語(yǔ)寫(xiě)作能力培養(yǎng)研究課題實(shí)施方案
- 部編版小學(xué)語(yǔ)文一年級(jí)上冊(cè)期末復(fù)習(xí)計(jì)劃
- 大貓英語(yǔ)分級(jí)閱讀 三級(jí)1 How to Have a Party 課件
- 常用焊接英語(yǔ)詞匯大全
- 數(shù)控技術(shù)專業(yè)實(shí)踐教學(xué)體系
- 福伊特液力變矩器的結(jié)構(gòu)及工作原理的使用
- 制漿造紙廠樹(shù)脂沉積的機(jī)理及其控制_圖文
- 涼山中小學(xué)期末考試題-涼山州2017-2018學(xué)年度上期期末試題八年級(jí)數(shù)學(xué)答案
- 單片機(jī)倒計(jì)時(shí)秒表課程設(shè)計(jì)報(bào)告書(shū)
- 某銀行裝飾裝修工程施工進(jìn)度計(jì)劃表
- 六年級(jí)分?jǐn)?shù)乘法簡(jiǎn)便運(yùn)算練習(xí)題
評(píng)論
0/150
提交評(píng)論