




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年上海市實(shí)驗(yàn)中學(xué)高三下學(xué)期(5月)三調(diào)數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),,且在上是單調(diào)函數(shù),則下列說法正確的是()A. B.C.函數(shù)在上單調(diào)遞減 D.函數(shù)的圖像關(guān)于點(diǎn)對稱2.若,則“”是“的展開式中項(xiàng)的系數(shù)為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件3.執(zhí)行下面的程序框圖,如果輸入,,則計(jì)算機(jī)輸出的數(shù)是()A. B. C. D.4.用一個(gè)平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形5.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件6.定義在上的偶函數(shù),對,,且,有成立,已知,,,則,,的大小關(guān)系為()A. B. C. D.7.曲線在點(diǎn)處的切線方程為()A. B. C. D.8.已知等差數(shù)列的前n項(xiàng)和為,,則A.3 B.4 C.5 D.69.下圖為一個(gè)正四面體的側(cè)面展開圖,為的中點(diǎn),則在原正四面體中,直線與直線所成角的余弦值為()A. B.C. D.10.已知圓:,圓:,點(diǎn)、分別是圓、圓上的動(dòng)點(diǎn),為軸上的動(dòng)點(diǎn),則的最大值是()A. B.9 C.7 D.11.若函數(shù)為自然對數(shù)的底數(shù))在區(qū)間上不是單調(diào)函數(shù),則實(shí)數(shù)的取值范圍是()A. B. C. D.12.已知函數(shù)的圖像的一條對稱軸為直線,且,則的最小值為()A. B.0 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知以x±2y=0為漸近線的雙曲線經(jīng)過點(diǎn),則該雙曲線的標(biāo)準(zhǔn)方程為________.14.記等差數(shù)列和的前項(xiàng)和分別為和,若,則______.15.已知滿足且目標(biāo)函數(shù)的最大值為7,最小值為1,則___________.16.在數(shù)列中,已知,則數(shù)列的的前項(xiàng)和為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)把的參數(shù)方程化為極坐標(biāo)方程:(2)求與交點(diǎn)的極坐標(biāo).18.(12分)已知橢圓E:()的離心率為,且短軸的一個(gè)端點(diǎn)B與兩焦點(diǎn)A,C組成的三角形面積為.(Ⅰ)求橢圓E的方程;(Ⅱ)若點(diǎn)P為橢圓E上的一點(diǎn),過點(diǎn)P作橢圓E的切線交圓O:于不同的兩點(diǎn)M,N(其中M在N的右側(cè)),求四邊形面積的最大值.19.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),點(diǎn).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程,并指出其形狀;(2)曲線與曲線交于,兩點(diǎn),若,求的值.20.(12分)已知函數(shù),其中.(1)函數(shù)在處的切線與直線垂直,求實(shí)數(shù)的值;(2)若函數(shù)在定義域上有兩個(gè)極值點(diǎn),且.①求實(shí)數(shù)的取值范圍;②求證:.21.(12分)已知數(shù)列中,(實(shí)數(shù)為常數(shù)),是其前項(xiàng)和,且數(shù)列是等比數(shù)列,恰為與的等比中項(xiàng).(1)證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的通項(xiàng)公式;(3)若,當(dāng)時(shí),的前項(xiàng)和為,求證:對任意,都有.22.(10分)已知函數(shù).(1)討論函數(shù)f(x)的極值點(diǎn)的個(gè)數(shù);(2)若f(x)有兩個(gè)極值點(diǎn)證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
根據(jù)函數(shù),在上是單調(diào)函數(shù),確定,然后一一驗(yàn)證,A.若,則,由,得,但.B.由,,確定,再求解驗(yàn)證.C.利用整體法根據(jù)正弦函數(shù)的單調(diào)性判斷.D.計(jì)算是否為0.【詳解】因?yàn)楹瘮?shù),在上是單調(diào)函數(shù),所以,即,所以,若,則,又因?yàn)椋?,解得,而,故A錯(cuò)誤.由,不妨令,得由,得或當(dāng)時(shí),,不合題意.當(dāng)時(shí),,此時(shí)所以,故B正確.因?yàn)椋瘮?shù),在上是單調(diào)遞增,故C錯(cuò)誤.,故D錯(cuò)誤.故選:B本題主要考查三角函數(shù)的性質(zhì)及其應(yīng)用,還考查了運(yùn)算求解的能力,屬于較難的題.2.B【解析】
求得的二項(xiàng)展開式的通項(xiàng)為,令時(shí),可得項(xiàng)的系數(shù)為90,即,求得,即可得出結(jié)果.【詳解】若則二項(xiàng)展開式的通項(xiàng)為,令,即,則項(xiàng)的系數(shù)為,充分性成立;當(dāng)?shù)恼归_式中項(xiàng)的系數(shù)為90,則有,從而,必要性不成立.故選:B.本題考查二項(xiàng)式定理、充分條件、必要條件及充要條件的判斷知識(shí),考查考生的分析問題的能力和計(jì)算能力,難度較易.3.B【解析】
先明確該程序框圖的功能是計(jì)算兩個(gè)數(shù)的最大公約數(shù),再利用輾轉(zhuǎn)相除法計(jì)算即可.【詳解】本程序框圖的功能是計(jì)算,中的最大公約數(shù),所以,,,故當(dāng)輸入,,則計(jì)算機(jī)輸出的數(shù)是57.故選:B.本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎(chǔ)題.4.C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點(diǎn):平面的基本性質(zhì)及推論.5.B【解析】
根據(jù)誘導(dǎo)公式化簡再分析即可.【詳解】因?yàn)?所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B本題考查充分與必要條件的判定以及誘導(dǎo)公式的運(yùn)用,屬于基礎(chǔ)題.6.A【解析】
根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性即可判斷.【詳解】解:對,,且,有在上遞增因?yàn)槎x在上的偶函數(shù)所以在上遞減又因?yàn)?,,所以故選:A考查偶函數(shù)的性質(zhì)以及單調(diào)性的應(yīng)用,基礎(chǔ)題.7.A【解析】
將點(diǎn)代入解析式確定參數(shù)值,結(jié)合導(dǎo)數(shù)的幾何意義求得切線斜率,即可由點(diǎn)斜式求的切線方程.【詳解】曲線,即,當(dāng)時(shí),代入可得,所以切點(diǎn)坐標(biāo)為,求得導(dǎo)函數(shù)可得,由導(dǎo)數(shù)幾何意義可知,由點(diǎn)斜式可得切線方程為,即,故選:A.本題考查了導(dǎo)數(shù)的幾何意義,在曲線上一點(diǎn)的切線方程求法,屬于基礎(chǔ)題.8.C【解析】
方法一:設(shè)等差數(shù)列的公差為,則,解得,所以.故選C.方法二:因?yàn)椋?,則.故選C.9.C【解析】
將正四面體的展開圖還原為空間幾何體,三點(diǎn)重合,記作,取中點(diǎn),連接,即為與直線所成的角,表示出三角形的三條邊長,用余弦定理即可求得.【詳解】將展開的正四面體折疊,可得原正四面體如下圖所示,其中三點(diǎn)重合,記作:則為中點(diǎn),取中點(diǎn),連接,設(shè)正四面體的棱長均為,由中位線定理可得且,所以即為與直線所成的角,,由余弦定理可得,所以直線與直線所成角的余弦值為,故選:C.本題考查了空間幾何體中異面直線的夾角,將展開圖折疊成空間幾何體,余弦定理解三角形的應(yīng)用,屬于中檔題.10.B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關(guān)于軸的對稱點(diǎn),,故的最大值為,故選B.考點(diǎn):圓與圓的位置關(guān)系及其判定.【思路點(diǎn)睛】先根據(jù)兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對稱性,求出所求式子的最大值.11.B【解析】
求得的導(dǎo)函數(shù),由此構(gòu)造函數(shù),根據(jù)題意可知在上有變號零點(diǎn).由此令,利用分離常數(shù)法結(jié)合換元法,求得的取值范圍.【詳解】,設(shè),要使在區(qū)間上不是單調(diào)函數(shù),即在上有變號零點(diǎn),令,則,令,則問題即在上有零點(diǎn),由于在上遞增,所以的取值范圍是.故選:B本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查方程零點(diǎn)問題的求解策略,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.12.D【解析】
運(yùn)用輔助角公式,化簡函數(shù)的解析式,由對稱軸的方程,求得的值,得出函數(shù)的解析式,集合正弦函數(shù)的最值,即可求解,得到答案.【詳解】由題意,函數(shù)為輔助角,由于函數(shù)的對稱軸的方程為,且,即,解得,所以,又由,所以函數(shù)必須取得最大值和最小值,所以可設(shè),,所以,當(dāng)時(shí),的最小值,故選D.本題主要考查了正弦函數(shù)的圖象與性質(zhì),其中解答中利用三角恒等變換的公式,化簡函數(shù)的解析式,合理利用正弦函數(shù)的對稱性與最值是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設(shè)雙曲線方程為,代入點(diǎn),計(jì)算得到答案.【詳解】雙曲線漸近線為,則設(shè)雙曲線方程為:,代入點(diǎn),則.故雙曲線方程為:.故答案為:.本題考查了根據(jù)漸近線求雙曲線,設(shè)雙曲線方程為是解題的關(guān)鍵.14.【解析】
結(jié)合等差數(shù)列的前項(xiàng)和公式,可得,求解即可.【詳解】由題意,,,因?yàn)?所以.故答案為:.本題考查了等差數(shù)列的前項(xiàng)和公式及等差中項(xiàng)的應(yīng)用,考查了學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.15.-2【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大最小值時(shí)所在的頂點(diǎn)即可.【詳解】由題意得:目標(biāo)函數(shù)在點(diǎn)B取得最大值為7,在點(diǎn)A處取得最小值為1,∴,,∴直線AB的方程是:,∴則,故答案為.本題主要考查了簡單的線性規(guī)劃,以及利用幾何意義求最值的方法,屬于基礎(chǔ)題.16.【解析】
由已知數(shù)列遞推式可得數(shù)列的所有奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別構(gòu)成以2為公比的等比數(shù)列,求其通項(xiàng)公式,得到,再由求解.【詳解】解:由,得,,則數(shù)列的所有奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別構(gòu)成以2為公比的等比數(shù)列.,..故答案為:.本題考查數(shù)列遞推式,考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式,訓(xùn)練了數(shù)列的分組求和,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)與交點(diǎn)的極坐標(biāo)為,和【解析】
(1)先把曲線化成直角坐標(biāo)方程,再化簡成極坐標(biāo)方程;(2)聯(lián)立曲線和曲線的方程解得即可.【詳解】(1)曲線的直角坐標(biāo)方程為:,即.的參數(shù)方程化為極坐標(biāo)方程為;(2)聯(lián)立可得:,與交點(diǎn)的極坐標(biāo)為,和.本題考查了參數(shù)方程,直角坐標(biāo)方程,極坐標(biāo)方程的互化,也考查了極坐標(biāo)方程的聯(lián)立,屬于基礎(chǔ)題.18.(Ⅰ);(Ⅱ)4.【解析】
(Ⅰ)結(jié)合已知可得,求出a,b的值,即可得橢圓方程;(Ⅱ)由題意可知,直線的斜率存在,設(shè)出直線方程,聯(lián)立直線方程與橢圓方程,利用判別式等于0可得,聯(lián)立直線方程與圓的方程,結(jié)合根與系數(shù)的關(guān)系求得,利用弦長公式及點(diǎn)到直線的距離公式,求出,得到,整理后利用基本不等式求最值.【詳解】解:(Ⅰ)可得,結(jié)合,解得,,,得橢圓方程;(Ⅱ)易知直線的斜率k存在,設(shè):,由,得,由,得,∵,設(shè)點(diǎn)O到直線:的距離為d,,,由,得,,,∴∴,∴而,,易知,∴,則,四邊形的面積當(dāng)且僅當(dāng),即時(shí)取“”.∴四邊形面積的最大值為4.本題考查了由求橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,考查了學(xué)生的計(jì)算能力,綜合性比較強(qiáng),屬于難題.19.(1),以為圓心,為半徑的圓;(2)【解析】
(1)根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,直接得到的直角坐標(biāo)方程并判斷形狀;(2)聯(lián)立直線參數(shù)方程與的直角坐標(biāo)方程,根據(jù)直線參數(shù)方程中的幾何意義結(jié)合求解出的值.【詳解】解:(1)由,得,所以,即,.所以曲線是以為圓心,為半徑的圓.(2)將代入,整理得.設(shè)點(diǎn),所對應(yīng)的參數(shù)分別為,,則,.,解得,則.本題考查極坐標(biāo)與直角坐標(biāo)的互化以及根據(jù)直線參數(shù)方程中的幾何意義求值,難度一般.(1)極坐標(biāo)與直角坐標(biāo)的互化公式:;(2)若要使用直線參數(shù)方程中的幾何意義,要注意將直線的標(biāo)準(zhǔn)參數(shù)方程代入到對應(yīng)曲線的直角坐標(biāo)方程中,構(gòu)成關(guān)于的一元二次方程并結(jié)合韋達(dá)定理形式進(jìn)行分析求解.20.(1);(2)①;②詳見解析.【解析】
(1)由函數(shù)在處的切線與直線垂直,即可得,對其求導(dǎo)并表示,代入上述方程即可解得答案;(2)①已知要求等價(jià)于在上有兩個(gè)根,且,即在上有兩個(gè)不相等的根,由二次函數(shù)的圖象與性質(zhì)構(gòu)建不等式組,解得答案,最后分析此時(shí)單調(diào)性推及極值說明即可;②由①可知,是方程的兩個(gè)不等的實(shí)根,由韋達(dá)定理可表達(dá)根與系數(shù)的關(guān)系,進(jìn)而用含的式子表示,令,對求導(dǎo)分析單調(diào)性,即可知道存在常數(shù)使在上單調(diào)遞減,在上單調(diào)遞增,進(jìn)而求最值證明不等式成立.【詳解】解:(1)依題意,,,故,所以,據(jù)題意可知,,解得.所以實(shí)數(shù)的值為.(2)①因?yàn)楹瘮?shù)在定義域上有兩個(gè)極值點(diǎn),且,所以在上有兩個(gè)根,且,即在上有兩個(gè)不相等的根.所以解得.當(dāng)時(shí),若或,,,函數(shù)在和上單調(diào)遞增;若,,,函數(shù)在上單調(diào)遞減,故函數(shù)在上有兩個(gè)極值點(diǎn),且.所以,實(shí)數(shù)的取值范圍是.②由①可知,是方程的兩個(gè)不等的實(shí)根,所以其中.故,令,其中.故,令,,在上單調(diào)遞增.由于,,所以存在常數(shù),使得,即,,且當(dāng)時(shí),,在上單調(diào)遞減;當(dāng)時(shí),,在上單調(diào)遞增,所以當(dāng)時(shí),,又,,所以,即,故得證.本題考查導(dǎo)數(shù)的幾何意義、兩直線的位置關(guān)系、由極值點(diǎn)個(gè)數(shù)求參數(shù)范圍問題,還考查了利用導(dǎo)數(shù)證明不等式成立,屬于難題.21.(1)見解析(2)(3)見解析【解析】
(1)令可得,即.得到,再利用通項(xiàng)公式和前n項(xiàng)和的關(guān)系求解,(2)由(1)知,.設(shè)等比數(shù)列的公比為,所以,再根據(jù)恰為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 防水修繕合同范本
- 借款融資居間服務(wù)合同范本
- 加梯安裝合同范例
- 醫(yī)生技術(shù)股協(xié)議合同范本
- 單位燈具購買合同范本
- 修車合同范本模板
- 農(nóng)村建房買房合同范本
- 農(nóng)村豬場合同范本
- 人事專員勞務(wù)合同范本
- 勞務(wù)供銷合同范例
- 09式 新擒敵拳 教學(xué)教案 教學(xué)法 圖解
- 《網(wǎng)店運(yùn)營與管理》整本書電子教案全套教學(xué)教案
- 打印版 《固體物理教程》課后答案王矜奉
- CAD術(shù)語對照表
- 學(xué)術(shù)論文的寫作與規(guī)范課件
- 香港牛津新魔法Newmagic3AUnit4Mycalendar單元檢測試卷
- 中考《紅星照耀中國》各篇章練習(xí)題及答案(1-12)
- Q∕GDW 11612.43-2018 低壓電力線高速載波通信互聯(lián)互通技術(shù)規(guī)范 第4-3部分:應(yīng)用層通信協(xié)議
- 自動(dòng)化物料編碼規(guī)則
- 第1本書出體旅程journeys out of the body精教版2003版
- [英語考試]同等學(xué)力英語新大綱全部詞匯
評論
0/150
提交評論