新高考數(shù)學(xué)一輪復(fù)習(xí)知識總結(jié) 數(shù)列(含解析)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)知識總結(jié) 數(shù)列(含解析)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)知識總結(jié) 數(shù)列(含解析)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)知識總結(jié) 數(shù)列(含解析)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)知識總結(jié) 數(shù)列(含解析)_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

第四章數(shù)列要點一:數(shù)列的通項公式數(shù)列的通項公式一個數(shù)列SKIPIF1<0的第n項SKIPIF1<0與項數(shù)n之間的函數(shù)關(guān)系,如果可以用一個公式SKIPIF1<0來表示,我們就把這個公式叫做這個數(shù)列的通項公式.要點詮釋:①不是每個數(shù)列都能寫出它的通項公式.如數(shù)列1,2,3,―1,4,―2,就寫不出通項公式;②有的數(shù)列雖然有通項公式,但在形式上又不一定是唯一的.如:數(shù)列―1,1,―1,1,…的通項公式可以寫成SKIPIF1<0,也可以寫成SKIPIF1<0;③僅僅知道一個數(shù)列的前面的有限項,無其他說明,數(shù)列是不能確定的.通項SKIPIF1<0與前n項和SKIPIF1<0的關(guān)系:任意數(shù)列SKIPIF1<0的前n項和SKIPIF1<0;SKIPIF1<0要點詮釋:由前n項和SKIPIF1<0求數(shù)列通項時,要分三步進行:(1)求SKIPIF1<0,(2)求出當(dāng)n≥2時的SKIPIF1<0,(3)如果令n≥2時得出的SKIPIF1<0中的n=1時有SKIPIF1<0成立,則最后的通項公式可以統(tǒng)一寫成一個形式,否則就只能寫成分段的形式.數(shù)列的遞推式:如果已知數(shù)列的第一項或前若干項,且任一項SKIPIF1<0與它的前一項SKIPIF1<0或前若干項間的關(guān)系可以用一個公式來表示,那么這個公式就叫做這個數(shù)列的遞推公式,簡稱遞推式.要點詮釋:利用遞推關(guān)系表示數(shù)列時,需要有相應(yīng)個數(shù)的初始值,可用湊配法、換元法等.要點二:等差數(shù)列判定一個數(shù)列為等差數(shù)列的常用方法①定義法:SKIPIF1<0(常數(shù))SKIPIF1<0SKIPIF1<0是等差數(shù)列;②中項公式法:SKIPIF1<0是等差數(shù)列;③通項公式法:SKIPIF1<0(p,q為常數(shù))SKIPIF1<0SKIPIF1<0是等差數(shù)列;④前n項和公式法:SKIPIF1<0(A,B為常數(shù))SKIPIF1<0SKIPIF1<0是等差數(shù)列.要點詮釋:對于探索性較強的問題,則應(yīng)注意從特例入手,歸納猜想一般特性.等差數(shù)列的有關(guān)性質(zhì):(1)通項公式的推廣:SKIPIF1<0(2)若SKIPIF1<0,則SKIPIF1<0;特別,若SKIPIF1<0,則SKIPIF1<0(3)等差數(shù)列SKIPIF1<0中,若SKIPIF1<0SKIPIF1<0.(4)公差為d的等差數(shù)列中,連續(xù)k項和SKIPIF1<0,…組成新的等差數(shù)列.(5)等差數(shù)列SKIPIF1<0,前n項和為SKIPIF1<0①當(dāng)n為奇數(shù)時,SKIPIF1<0;SKIPIF1<0;SKIPIF1<0;②當(dāng)n為偶數(shù)時,SKIPIF1<0;SKIPIF1<0;SKIPIF1<0.(6)等差數(shù)列SKIPIF1<0,前n項和為SKIPIF1<0,則SKIPIF1<0(m、n∈N*,且m≠n).(7)等差數(shù)列SKIPIF1<0中,若m+n=p+q(m、n、p、q∈N*,且m≠n,p≠q),則SKIPIF1<0.(8)等差數(shù)列SKIPIF1<0中,公差d,依次每k項和:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,新公差SKIPIF1<0.等差數(shù)列前n項和SKIPIF1<0的最值問題:等差數(shù)列SKIPIF1<0中=1\*GB3①若a1>0,d<0,SKIPIF1<0有最大值,可由不等式組SKIPIF1<0來確定n;=2\*GB3②若a1<0,d>0,SKIPIF1<0有最小值,可由不等式組SKIPIF1<0來確定n,也可由前n項和公式SKIPIF1<0來確定n.要點詮釋:等差數(shù)列的求和中的函數(shù)思想是解決最值問題的基本方法.要點三:等比數(shù)列判定一個數(shù)列是等比數(shù)列的常用方法(1)定義法:SKIPIF1<0(q是不為0的常數(shù),n∈N*)SKIPIF1<0是等比數(shù)列;(2)通項公式法:SKIPIF1<0(c、q均是不為0的常數(shù)n∈N*)SKIPIF1<0是等比數(shù)列;(3)中項公式法:SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)SKIPIF1<0是等比數(shù)列.等比數(shù)列的主要性質(zhì):(1)通項公式的推廣:SKIPIF1<0(2)若SKIPIF1<0,則SKIPIF1<0.特別,若SKIPIF1<0,則SKIPIF1<0(3)等比數(shù)列SKIPIF1<0中,若SKIPIF1<0SKIPIF1<0.(4)公比為q的等比數(shù)列中,連續(xù)k項和SKIPIF1<0,…組成新的等比數(shù)列.(5)等比數(shù)列SKIPIF1<0,前n項和為SKIPIF1<0,當(dāng)n為偶數(shù)時,SKIPIF1<0.(6)等比數(shù)列SKIPIF1<0中,公比為q,依次每k項和:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0…成公比為qk的等比數(shù)列.(7)若SKIPIF1<0為正項等比數(shù)列,則SKIPIF1<0(a>0且a≠1)為等差數(shù)列;反之,若SKIPIF1<0為等差數(shù)列,則SKIPIF1<0(a>0且a≠1)為等比數(shù)列.(8)等比數(shù)列SKIPIF1<0前n項積為SKIPIF1<0,則SKIPIF1<0等比數(shù)列的通項公式與函數(shù):SKIPIF1<0①方程觀點:知二求一;②函數(shù)觀點:SKIPIF1<0SKIPIF1<0時,是關(guān)于n的指數(shù)型函數(shù);SKIPIF1<0時,是常數(shù)函數(shù);要點詮釋:當(dāng)SKIPIF1<0時,若SKIPIF1<0,等比數(shù)列SKIPIF1<0是遞增數(shù)列;若SKIPIF1<0,等比數(shù)列SKIPIF1<0是遞減數(shù)列;當(dāng)SKIPIF1<0時,若SKIPIF1<0,等比數(shù)列SKIPIF1<0是遞減數(shù)列;若SKIPIF1<0,等比數(shù)列SKIPIF1<0是遞增數(shù)列;當(dāng)SKIPIF1<0時,等比數(shù)列SKIPIF1<0是擺動數(shù)列;當(dāng)SKIPIF1<0時,等比數(shù)列SKIPIF1<0是非零常數(shù)列.要點四:常見的數(shù)列求和方法公式法:如果一個數(shù)列是等差數(shù)列或者等比數(shù)列,直接用其前n項和公式求和.分組求和法:將通項拆開成等差數(shù)列和等比數(shù)列相加或相減的形式,然后分別對等差數(shù)列和等比數(shù)列求和.如:an=2n+3n.裂項相消求和法:把數(shù)列的通項拆成兩項之差,正負(fù)相消,剩下首尾若干項的方法.一般通項的分子為非零常數(shù),分母為非常數(shù)列的等差數(shù)列的兩項積的形式.若SKIPIF1<0,分子為非零常數(shù),分母為非常數(shù)列的等差數(shù)列的兩項積的形式,則SKIPIF1<0,如an=SKIPIF1<0SKIPIF1<0錯位相減求和法:通項為非常數(shù)列的等差數(shù)列與等比數(shù)列的對應(yīng)項的積的形式:SKIPIF1<0,其中SKIPIF1<0是公差d≠0等差數(shù)列,SKIPIF1<0是公比q≠1等比數(shù)列,如an=(2n-1)2n.一般步驟:SKIPIF1<0,則SKIPIF1<0所以有SKIPIF1<0要點詮釋:求和中觀察數(shù)列的類型,選擇合適的變形手段,注意錯位相減中變形的要點.要點五:數(shù)列應(yīng)用問題數(shù)列應(yīng)用問題是中學(xué)數(shù)學(xué)教學(xué)與研究的一個重要內(nèi)容,解答數(shù)學(xué)應(yīng)用問題的核心是建立數(shù)學(xué)模型,有關(guān)平均增長率、利率(復(fù)利)以及等值增減等實際問題,需利用數(shù)列知識建立數(shù)學(xué)模型.建立數(shù)學(xué)模型的一般方法步驟.①認(rèn)真審題,準(zhǔn)確理解題意,達到如下要求:⑴明確問題屬于哪類應(yīng)用問題;⑵弄清題目中的主要已知事項;⑶明確所求的結(jié)論是什么.②抓住數(shù)量關(guān)系,聯(lián)想數(shù)學(xué)知識和數(shù)學(xué)方法,恰當(dāng)引入?yún)?shù)變量或適當(dāng)建立坐標(biāo)系,將文字語言翻譯成數(shù)學(xué)語言,將數(shù)量關(guān)系用數(shù)學(xué)式子表達.③將實際問題抽象為數(shù)學(xué)問題,將已知與所求聯(lián)系起來,據(jù)題意列出滿足題意的數(shù)學(xué)關(guān)系式(如函數(shù)關(guān)系、方程、不等式).要點詮釋:數(shù)列的建模過程是解決數(shù)列應(yīng)用題的重點,要正確理解題意,恰當(dāng)設(shè)出數(shù)列的基本量.要點六數(shù)學(xué)歸納法一般地,證明一個與正整數(shù)SKIPIF1<0有關(guān)的命題,可按下列步驟進行:(1)歸納奠基:證明當(dāng)SKIPIF1<0取第一個值SKIPIF1<0時命題成立;(2)歸納遞推:假設(shè)當(dāng)SKIPIF1<0時命題成立,證明當(dāng)SKIPIF1<0時命題也成立.只要完成這兩個步驟,就可以斷定命題對從SKIPIF1<0開始的所有正整數(shù)SKIPIF1<0都成立.上述證明方法叫做數(shù)學(xué)歸納法,數(shù)學(xué)歸納法的框圖表示如下:歸納奠基歸納奠基歸納遞推驗證當(dāng)SKIPIF1<0時命題成立若當(dāng)SKIPIF1<0時命題成立,證明當(dāng)SKIPIF1<0時命題也成立命題對從SKIPIF1<0開始的所有正整數(shù)SKIPIF1<0都成立要點詮釋一般地,對于一些可以遞推的與正整數(shù)有關(guān)的命題,都可以用數(shù)學(xué)歸納法來證明.其常見應(yīng)用類型有:(1)證明恒等式;(2)證明不等式;(3)整除性的證明;(4)探求平面幾何中的問題;(5)探求數(shù)列的通項.專題一求數(shù)列的通項公式數(shù)列的通項公式是數(shù)列的核心內(nèi)容之一,它如同函數(shù)中的解析式一樣,有了解析式就可以研究函數(shù)的性質(zhì),而有了數(shù)列的通項公式便可以求出數(shù)列中的任何一項.所以求數(shù)列的通項公式往往是解題的關(guān)鍵點和突破口,常用的求數(shù)列通項公式的方法有:(1)觀察法:就是觀察數(shù)列的特征,找出各項共同的構(gòu)成規(guī)律,歸納出通項公式.(2)遞推公式法:就是根據(jù)數(shù)列的遞推公式,采用迭代、疊加、累乘、轉(zhuǎn)化等方法產(chǎn)生SKIPIF1<0與SKIPIF1<0(或SKIPIF1<0)的關(guān)系,得出通項公式.(3)前SKIPIF1<0項和公式法:就是利用SKIPIF1<0,求通項公式,這里應(yīng)當(dāng)注意檢驗SKIPIF1<0是否符合SKIPIF1<0時的形式.1.利用觀察法求通項公式例1將乒乓球堆成若干堆“正三棱錐”形的展品,其中第1堆只有1層,就一個球;第2,3,4,…堆最底層(第一層)分別按人頭SKIPIF1<0所示方式固定擺放,從第二層開始,每層的小球自然壘放在下一層之上,第SKIPIF1<0堆第SKIPIF1<0層就放一個乒乓球.以SKIPIF1<0表示第SKIPIF1<0堆的乒乓球總數(shù),則SKIPIF1<0;SKIPIF1<0(答案用SKIPIF1<0表示).解析:方法1:SKIPIF1<0表示第3堆的乒乓球總數(shù),則SKIPIF1<0.設(shè)第SKIPIF1<0堆的最底層有SKIPIF1<0個乒乓球,則SKIPIF1<0.所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.方法2.易知SKIPIF1<0.由題意,知SKIPIF1<0比SKIPIF1<0多最底層,有SKIPIF1<0個,SKIPIF1<0比SKIPIF1<0多最底層,有SKIPIF1<0個,SKIPIF1<0比SKIPIF1<0多最底層,有SKIPIF1<0個,……,SKIPIF1<0比SKIPIF1<0多最底層,有SKIPIF1<0個,所以SKIPIF1<0SKIPIF1<0.所以由累加法可得SKIPIF1<0.答案:SKIPIF1<0SKIPIF1<0解后反思:利用觀察法求通項公式,體現(xiàn)了由特殊到一般的認(rèn)識事物的規(guī)律.解決這類問題一定要注意觀察項與項數(shù)的關(guān)系和相鄰項間的關(guān)系.2.公式法求通項公式等差數(shù)列與等比數(shù)列是兩種常見且重要的數(shù)列,所謂公式法就是先分析后項與前項的差或比是否符合等差數(shù)列、等比數(shù)列的定義.求通項時,只需先求出SKIPIF1<0與SKIPIF1<0或SKIPIF1<0與SKIPIF1<0,再代入等差數(shù)列通項公式SKIPIF1<0或等比數(shù)列通項公式SKIPIF1<0中即可.例2已知等差數(shù)列SKIPIF1<0滿足:SKIPIF1<0,且SKIPIF1<0成等比數(shù)列.(1)求數(shù)列SKIPIF1<0的通項公式;(2)記SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項和,是否存在正整數(shù)SKIPIF1<0,使得SKIPIF1<0?若存在,求SKIPIF1<0的最小值;若不存在,說明理由.分析:(1)設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,利用等比數(shù)列的性質(zhì)得到SKIPIF1<0,并利用SKIPIF1<0表示SKIPIF1<0來求解公差SKIPIF1<0,進而求出通項;(2)首先利用(1)的結(jié)論與等差數(shù)列的前SKIPIF1<0項和公式求解SKIPIF1<0,然后根據(jù)列不等式SKIPIF1<0求解.解:設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,依題意,知SKIPIF1<0成等比數(shù)列,故SKIPIF1<0,化簡,得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,故數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0或SKIPIF1<0.(2)當(dāng)SKIPIF1<0時,SKIPIF1<0,顯然SKIPIF1<0,此時不存在正整數(shù)SKIPIF1<0,使得SKIPIF1<0成立.當(dāng)SKIPIF1<0時,SKIPIF1<0.令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),此時存在正整數(shù)SKIPIF1<0,使得SKIPIF1<0成立,SKIPIF1<0的最小值為SKIPIF1<0.綜上,當(dāng)SKIPIF1<0時,不存在滿足題意的SKIPIF1<0;當(dāng)SKIPIF1<0時,存在滿足題意的SKIPIF1<0,其最小值為SKIPIF1<0.解后反思:運用公式法求數(shù)列的通項公式的關(guān)鍵是在已知數(shù)列是等差數(shù)列還是等比數(shù)列的前提下,先求出首相和公差或公比,再代入求出相應(yīng)的通項公式.3.利用SKIPIF1<0與SKIPIF1<0的關(guān)系求通項公式如果給出條件中是SKIPIF1<0與SKIPIF1<0的關(guān)系式,可利用SKIPIF1<0,先求出SKIPIF1<0,若計算出的SKIPIF1<0中,當(dāng)SKIPIF1<0時,也有SKIPIF1<0,則可合并為一個通項公式,否則要分段表述.例3設(shè)各項均為正數(shù)的數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,且SKIPIF1<0滿足SKIPIF1<0.(1)求SKIPIF1<0的值;(2)求數(shù)列SKIPIF1<0的通項公式.分析(1)有SKIPIF1<0與SKIPIF1<0的關(guān)系直接求出SKIPIF1<0的值;(2)利用前SKIPIF1<0項和與第SKIPIF1<0項的關(guān)系求解.解:(1)當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0(負(fù)值舍去).(2)由SKIPIF1<0,得SKIPIF1<0.又已知各項均為正數(shù),故SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0也滿足上式,所以SKIPIF1<0.解后反思:前SKIPIF1<0項和的關(guān)系式有兩種形式:一種是SKIPIF1<0與SKIPIF1<0的關(guān)系式,記為SKIPIF1<0,可由公式SKIPIF1<0直接求出SKIPIF1<0,但要注意SKIPIF1<0與SKIPIF1<0兩種情況能否統(tǒng)一;另一種是SKIPIF1<0與SKIPIF1<0的關(guān)系式,記為SKIPIF1<0,可由它求通項SKIPIF1<0.4.利用累加法求通項公式對于形如SKIPIF1<0形的遞推公式求通項公式,(1)當(dāng)SKIPIF1<0為常數(shù)時,為等差數(shù)列,則SKIPIF1<0;(2)當(dāng)SKIPIF1<0為SKIPIF1<0的函數(shù)時,用累加法,方法如下:由SKIPIF1<0,得當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0……SKIPIF1<0SKIPIF1<0以上SKIPIF1<0個等式累加,得SKIPIF1<0,所以SKIPIF1<0.為了書寫方便,也可以這樣寫:因為當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0(3)已知SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0可以是關(guān)于SKIPIF1<0的一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、分式函數(shù),求SKIPIF1<0.①若SKIPIF1<0是關(guān)于SKIPIF1<0的一次函數(shù),累加后可轉(zhuǎn)化為等差數(shù)列求和;②若SKIPIF1<0是關(guān)于SKIPIF1<0的二次函數(shù),累加后可分組求和;③若SKIPIF1<0是關(guān)于SKIPIF1<0的指數(shù)函數(shù),累加后可轉(zhuǎn)化為等比數(shù)列求和;④若SKIPIF1<0是關(guān)于SKIPIF1<0的分式函數(shù),累加后可裂項求和.例4已知在數(shù)列SKIPIF1<0中,SKIPIF1<0,且SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式.分析:由于給出了數(shù)列SKIPIF1<0中連續(xù)兩項的差,故可考慮用累加法求解.解:由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,……SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時,以上SKIPIF1<0個等式兩邊分別相加,得SKIPIF1<0SKIPIF1<0.即SKIPIF1<0.又因為SKIPIF1<0,所以SKIPIF1<0.因為當(dāng)SKIPIF1<0時,SKIPIF1<0也適合上式,所以數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0(SKIPIF1<0).解后反思:累加法是從SKIPIF1<0開始,累加到SKIPIF1<0,此時SKIPIF1<0,所以求出的SKIPIF1<0只滿足SKIPIF1<0的所有項,容易漏掉SKIPIF1<0這一項的檢驗.在學(xué)習(xí)過程中,要勇氣重視以減少不必要的失分.5.利用累乘法求通項公式對于由形如SKIPIF1<0型的遞推公式求通項公式.(1)當(dāng)SKIPIF1<0為常數(shù)時,即SKIPIF1<0(其中SKIPIF1<0是不為SKIPIF1<0的常數(shù)),此時數(shù)列為等比數(shù)列,SKIPIF1<0;(2)當(dāng)SKIPIF1<0為SKIPIF1<0的函數(shù)時,用累乘法.由SKIPIF1<0,得當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0.例5如圖所示,互不相同的點SKIPIF1<0和分別在角SKIPIF1<0的兩條邊上,所有SKIPIF1<0相互平行,且所有梯形SKIPIF1<0的面積均相等.設(shè)SKIPIF1<0,若SKIPIF1<0,則數(shù)列SKIPIF1<0的通項公式是.分析:利用梯形面積之間的關(guān)系探究出SKIPIF1<0與SKIPIF1<0之間的關(guān)系,累乘后即可得出通項公式.解析:令SKIPIF1<0,因為所有SKIPIF1<0相互平行且SKIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,……,SKIPIF1<0,以上各式SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0.答案:SKIPIF1<0.解后反思:SKIPIF1<0,當(dāng)SKIPIF1<0為常數(shù)時,則數(shù)列為等比數(shù)列,可用公式法求通項公式;當(dāng)SKIPIF1<0為關(guān)于SKIPIF1<0的表達式時,則用累乘法求通項公式.6.利用構(gòu)造法求通項公式形如SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0(SKIPIF1<0為待定系數(shù))的形式,比較SKIPIF1<0與SKIPIF1<0的系數(shù),得SKIPIF1<0,所以SKIPIF1<0.所以有SKIPIF1<0,因此數(shù)列SKIPIF1<0是首項為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列,于是SKIPIF1<0,所以SKIPIF1<0.例6在數(shù)列SKIPIF1<0中,SKIPIF1<0,求SKIPIF1<0的通項公式.分析:構(gòu)造以SKIPIF1<0為公比的等比數(shù)列求解.解:方法1:因為SKIPIF1<0,①所以SKIPIF1<0②①SKIPIF1<0②,得SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0.所以SKIPIF1<0為等比數(shù)列,公比為SKIPIF1<0,首項SKIPIF1<0.所以SKIPIF1<0.即SKIPIF1<0③由①③兩式,得SKIPIF1<0.方法2:令SKIPIF1<0(SKIPIF1<0為常數(shù)),則SKIPIF1<0,把該式與已知SKIPIF1<0對應(yīng)得SKIPIF1<0,即SKIPIF1<0.令SKIPIF1<0,則數(shù)列SKIPIF1<0是首相為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列.所以SKIPIF1<0.所以SKIPIF1<0.所以SKIPIF1<0.解后反思:方法1是解數(shù)列問題經(jīng)常采用的方法;方法2中利用待定系數(shù)法確定常數(shù)SKIPIF1<0,構(gòu)造新的等比數(shù)列,進而求通項公式,該方法也是常用的解法.專題二數(shù)列前SKIPIF1<0項和的求法求數(shù)列的前SKIPIF1<0項和是數(shù)列運算的重要內(nèi)容之一,也是歷年高考考查的熱點.對于等差數(shù)列、等比數(shù)列,可以直接利用求和公式計算,對于一些具有特殊結(jié)構(gòu)的運算數(shù)列,常用倒序相加法、裂項相消法、錯位相減法等求和.1.公式法如果一個數(shù)列的每一項是由幾個獨立的項組合而成,并且各獨立項也可組成等差數(shù)列或等比數(shù)列,則該數(shù)列的前SKIPIF1<0項和可考慮拆項后利用公式求解.例7已知數(shù)列SKIPIF1<0的通項公式SKIPIF1<0,求由其奇數(shù)項所組成的數(shù)列的前SKIPIF1<0項和SKIPIF1<0.分析:由SKIPIF1<0,知SKIPIF1<0是等比數(shù)列,所以其奇數(shù)項也成等比數(shù)列,確定其首項和公比,直接利用等比數(shù)列的前SKIPIF1<0項公式求和即可.解:由SKIPIF1<0,得SKIPIF1<0.又因為SKIPIF1<0,所以SKIPIF1<0是等比數(shù)列,其公比SKIPIF1<0,首項SKIPIF1<0.所以SKIPIF1<0的奇數(shù)項也成等比數(shù)列,公比為SKIPIF1<0,首項為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.解后反思:若已知是等差數(shù)列或等比數(shù)列,則直接利用相應(yīng)的前SKIPIF1<0項和公式求解.2.倒序相加法這是推導(dǎo)等差數(shù)列的前SKIPIF1<0項和公式時所用的方法,也就是將一個數(shù)列倒過來排列(反序),當(dāng)它與原數(shù)列相加時,若有公因式可提,并且剩余項的和易于求得,則這樣的舒蕾可用倒序相加法求和.例8已知SKIPIF1<0,其中SKIPIF1<0,求SKIPIF1<0.分析:觀察首項和末項的真數(shù)的積與第二項和倒數(shù)第二項的真數(shù)的積相同,可用倒序相加法求和.解:將和式中各項倒序排列,得SKIPIF1<0將此式與原式兩邊對應(yīng)相加,得SKIPIF1<0SKIPIF1<0.因為SKIPIF1<0,所以SKIPIF1<0.解后反思:對某些前后具有對稱性的數(shù)列,可以運用倒序相加法求其前SKIPIF1<0項和.3.錯位相減法若數(shù)列SKIPIF1<0為等差數(shù)列,數(shù)列SKIPIF1<0為等比數(shù)列,由這兩個數(shù)列的對應(yīng)項乘積組成的新數(shù)列為SKIPIF1<0,當(dāng)求該新數(shù)列的前SKIPIF1<0項的和時,常常采用將SKIPIF1<0的各項乘以公比SKIPIF1<0,并向后錯位一項與SKIPIF1<0的同次項對應(yīng)相減,即可轉(zhuǎn)化為特殊數(shù)列的求和,所以這種數(shù)列求和的方法稱為錯位相減法.例9數(shù)列SKIPIF1<0的前SKIPIF1<0項和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0;(2)求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.分析:(1)先利用SKIPIF1<0與SKIPIF1<0的關(guān)系求出SKIPIF1<0,再分類討論得出SKIPIF1<0;(2)利用錯位相減法求前SKIPIF1<0項和SKIPIF1<0.解:(1)因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.又因為SKIPIF1<0.所以SKIPIF1<0是首項為1,公比為3的等比數(shù)列.所以SKIPIF1<0.當(dāng)SKIPIF1<0時SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0.(2)SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0;當(dāng)SKIPIF1<0時,SKIPIF1<0,①所以SKIPIF1<0,②①SKIPIF1<0②,得SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.又因為SKIPIF1<0也滿足上式,所以SKIPIF1<0.解后反思:利用錯位相減法求和時,一定要注意作差后項的符號及項的變化.4.拆項(分組)求和法如果一個數(shù)列中連續(xù)分段的和具有一定的規(guī)律性,那么可考慮分組求和.分組求和實際上就是首先通過“拆”和“組”的手段把問題劃歸為等差數(shù)列或等比數(shù)列,然后由等差數(shù)列、等比數(shù)列求和公式求解.解題時要根據(jù)各組的特點,對SKIPIF1<0的取值進行討論.例10設(shè)SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項和,SKIPIF1<0,SKIPIF1<0,則(1)SKIPIF1<0;(2)SKIPIF1<0.分析:(1)根據(jù)SKIPIF1<0建立關(guān)于SKIPIF1<0的關(guān)系式,并由SKIPIF1<0的關(guān)系式歸納尋找其規(guī)律后求解;(2)將遞推關(guān)系應(yīng)用到SKIPIF1<0中,將和式分組后求和.解析:(1)因為SKIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0為偶數(shù)時,SKIPIF1<0,當(dāng)SKIPIF1<0為奇數(shù)時,SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0.(2)當(dāng)SKIPIF1<0為偶數(shù)時,SKIPIF1<0,當(dāng)SKIPIF1<0為奇數(shù)時,SKIPIF1<0,可得當(dāng)SKIPIF1<0為奇數(shù)時,SKIPIF1<0,故SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.答案:(1)SKIPIF1<0(2)SKIPIF1<0解后反思:數(shù)列求和應(yīng)從通項公式入手,若無通項公式,則先求其通項公式,再通過對通項公式的變形,轉(zhuǎn)化為求等差數(shù)列或等比數(shù)列的前SKIPIF1<0項和.5.并項求和法一個數(shù)列的前SKIPIF1<0項和中,若可兩兩結(jié)合求解,則稱之為并項求和.形如SKIPIF1<0的類型,可采用兩項合并求解.例如,SKIPIF1<0SKIPIF1<0.例11數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0,求:(1)數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0;(2)數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.分析:形如SKIPIF1<0,運用并項求和法,先判斷相鄰兩項和的關(guān)系.SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0可以兩兩合并進行求解.由于SKIPIF1<0的奇偶性未知,應(yīng)分SKIPIF1<0為奇數(shù)和SKIPIF1<0為偶數(shù)兩種情況討論.解:(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0.(2)當(dāng)SKIPIF1<0為偶數(shù)時,SKIPIF1<0SKIPIF1<0.因為SKIPIF1<0成等差數(shù)列,共SKIPIF1<0項,所以SKIPIF1<0.當(dāng)SKIPIF1<0為奇數(shù)時,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.故SKIPIF1<0.解后反思:在并項求和時,要先判斷項數(shù)的多少,由于是兩兩合并,就要知道最后一項是奇數(shù)項還是偶數(shù)項,若不確定,則需分類討論.6.裂項相消法對于裂項后明顯有能夠相消的項的一類數(shù)列,在求和時常用“裂項法”,分式的求和多利用此法.可用待定系數(shù)法對通項公式進行裂項,相消時應(yīng)注意消去項的規(guī)律,即消去哪些項,保留哪些項.常見的裂項公式有:①SKIPIF1<0;②若SKIPIF1<0為等差數(shù)列,公差為SKIPIF1<0,則SKIPIF1<0;③SKIPIF1<0等.例12求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.分析:先求出通項公式SKIPIF1<0,對通項公式化簡后,再分成兩項的差,使用裂項相消法求和.解:數(shù)列的通項公式SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0.解后反思:(1)裂項原則:直到發(fā)現(xiàn)被消去項的規(guī)律為止;(2)消項規(guī)律:消項后前邊剩幾項,后邊就剩幾項,前邊剩第幾項,后邊剩倒數(shù)第幾項.專題三數(shù)列的綜合應(yīng)用數(shù)列(特別是等差數(shù)列與等比數(shù)列)涉及的內(nèi)容多、聯(lián)系多、綜合性強,在處理與數(shù)列有關(guān)的綜合問題是,一定要靈活應(yīng)用數(shù)列的基本知識與方法.?dāng)?shù)列始終處在知識的交匯點上,常與函數(shù)、方程、不等式等其他知識交匯進行命題.例13以數(shù)列SKIPIF1<0的任意相鄰兩項為橫坐標(biāo)、縱坐標(biāo)的點SKIPIF1<0均在一次函數(shù)SKIPIF1<0的圖像上,數(shù)列SKIPIF1<0.(1)求證:數(shù)列SKIPIF1<0是等比數(shù)列;(2)設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項和分別為SKIPIF1<0,若SKIPIF1<0,求SKIPIF1<0的值.分析:本題考查等比數(shù)列與函數(shù)的知識.先由SKIPIF1<0在一次函數(shù)SKIPIF1<0上,結(jié)合SKIPIF1<0,求出SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論