2022年遼寧省各地高考考前模擬數(shù)學試題含解析_第1頁
2022年遼寧省各地高考考前模擬數(shù)學試題含解析_第2頁
2022年遼寧省各地高考考前模擬數(shù)學試題含解析_第3頁
2022年遼寧省各地高考考前模擬數(shù)學試題含解析_第4頁
2022年遼寧省各地高考考前模擬數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若雙曲線:的一條漸近線方程為,則()A. B. C. D.2.已知命題:,,則為()A., B.,C., D.,3.已知集合,,則A. B.C. D.4.已知復數(shù)z滿足(i為虛數(shù)單位),則z的虛部為()A. B. C.1 D.5.()A. B. C. D.6.已知實數(shù),滿足,則的最大值等于()A.2 B. C.4 D.87.的展開式中的系數(shù)為()A.-30 B.-40 C.40 D.508.年初,湖北出現(xiàn)由新型冠狀病毒引發(fā)的肺炎.為防止病毒蔓延,各級政府相繼啟動重大突發(fā)公共衛(wèi)生事件一級響應,全國人心抗擊疫情.下圖表示月日至月日我國新型冠狀病毒肺炎單日新增治愈和新增確診病例數(shù),則下列中表述錯誤的是()A.月下旬新增確診人數(shù)呈波動下降趨勢B.隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù)C.月日至月日新增確診人數(shù)波動最大D.我國新型冠狀病毒肺炎累計確診人數(shù)在月日左右達到峰值9.下列選項中,說法正確的是()A.“”的否定是“”B.若向量滿足,則與的夾角為鈍角C.若,則D.“”是“”的必要條件10.數(shù)列{an},滿足對任意的n∈N+,均有an+an+1+an+2為定值.若a7=2,a9=3,a98=4,則數(shù)列{an}的前100項的和S100=()A.132 B.299 C.68 D.9911.已知隨機變量的分布列是則()A. B. C. D.12.如圖在一個的二面角的棱有兩個點,線段分別在這個二面角的兩個半平面內,且都垂直于棱,且,則的長為()A.4 B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知等差數(shù)列滿足,,則的值為________.14.平行四邊形中,,為邊上一點(不與重合),將平行四邊形沿折起,使五點均在一個球面上,當四棱錐體積最大時,球的表面積為________.15.設實數(shù),若函數(shù)的最大值為,則實數(shù)的最大值為______.16.已知雙曲線的左焦點為,、為雙曲線上關于原點對稱的兩點,的中點為,的中點為,的中點為,若,且直線的斜率為,則__________,雙曲線的離心率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)若,試討論的單調性;(2)若,實數(shù)為方程的兩不等實根,求證:.18.(12分)己知等差數(shù)列的公差,,且,,成等比數(shù)列.(1)求使不等式成立的最大自然數(shù)n;(2)記數(shù)列的前n項和為,求證:.19.(12分)某生物硏究小組準備探究某地區(qū)蜻蜓的翼長分布規(guī)律,據統(tǒng)計該地區(qū)蜻蜓有兩種,且這兩種的個體數(shù)量大致相等,記種蜻蜓和種蜻蜓的翼長(單位:)分別為隨機變量,其中服從正態(tài)分布,服從正態(tài)分布.(Ⅰ)從該地區(qū)的蜻蜓中隨機捕捉一只,求這只蜻蜓的翼長在區(qū)間的概率;(Ⅱ)記該地區(qū)蜻蜓的翼長為隨機變量,若用正態(tài)分布來近似描述的分布,請你根據(Ⅰ)中的結果,求參數(shù)和的值(精確到0.1);(Ⅲ)在(Ⅱ)的條件下,從該地區(qū)的蜻蜓中隨機捕捉3只,記這3只中翼長在區(qū)間的個數(shù)為,求的分布列及數(shù)學期望(分布列寫出計算表達式即可).注:若,則,,.20.(12分)已知函數(shù).(1)討論的單調性;(2)若在定義域內是增函數(shù),且存在不相等的正實數(shù),使得,證明:.21.(12分)已知,,分別為內角,,的對邊,且.(1)證明:;(2)若的面積,,求角.22.(10分)如圖,D是在△ABC邊AC上的一點,△BCD面積是△ABD面積的2倍,∠CBD=2∠ABD=2θ.(Ⅰ)若θ=,求的值;(Ⅱ)若BC=4,AB=2,求邊AC的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

根據雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點睛】本小題主要考查雙曲線的漸近線,屬于基礎題.2.C【解析】

根據全稱量詞命題的否定是存在量詞命題,即得答案.【詳解】全稱量詞命題的否定是存在量詞命題,且命題:,,.故選:.【點睛】本題考查含有一個量詞的命題的否定,屬于基礎題.3.D【解析】

因為,,所以,,故選D.4.D【解析】

根據復數(shù)z滿足,利用復數(shù)的除法求得,再根據復數(shù)的概念求解.【詳解】因為復數(shù)z滿足,所以,所以z的虛部為.故選:D.【點睛】本題主要考查復數(shù)的概念及運算,還考查了運算求解的能力,屬于基礎題.5.D【解析】

利用,根據誘導公式進行化簡,可得,然后利用兩角差的正弦定理,可得結果.【詳解】由所以,所以原式所以原式故故選:D【點睛】本題考查誘導公式以及兩角差的正弦公式,關鍵在于掌握公式,屬基礎題.6.D【解析】

畫出可行域,計算出原點到可行域上的點的最大距離,由此求得的最大值.【詳解】畫出可行域如下圖所示,其中,由于,,所以,所以原點到可行域上的點的最大距離為.所以的最大值為.故選:D【點睛】本小題主要考查根據可行域求非線性目標函數(shù)的最值,考查數(shù)形結合的數(shù)學思想方法,屬于基礎題.7.C【解析】

先寫出的通項公式,再根據的產生過程,即可求得.【詳解】對二項式,其通項公式為的展開式中的系數(shù)是展開式中的系數(shù)與的系數(shù)之和.令,可得的系數(shù)為;令,可得的系數(shù)為;故的展開式中的系數(shù)為.故選:C.【點睛】本題考查二項展開式中某一項系數(shù)的求解,關鍵是對通項公式的熟練使用,屬基礎題.8.D【解析】

根據新增確診曲線的走勢可判斷A選項的正誤;根據新增確診曲線與新增治愈曲線的位置關系可判斷B選項的正誤;根據月日至月日新增確診曲線的走勢可判斷C選項的正誤;根據新增確診人數(shù)的變化可判斷D選項的正誤.綜合可得出結論.【詳解】對于A選項,由圖象可知,月下旬新增確診人數(shù)呈波動下降趨勢,A選項正確;對于B選項,由圖象可知,隨著全國醫(yī)療救治力度逐漸加大,月下旬單日治愈人數(shù)超過確診人數(shù),B選項正確;對于C選項,由圖象可知,月日至月日新增確診人數(shù)波動最大,C選項正確;對于D選項,在月日及以前,我國新型冠狀病毒肺炎新增確診人數(shù)大于新增治愈人數(shù),我國新型冠狀病毒肺炎累計確診人數(shù)不在月日左右達到峰值,D選項錯誤.故選:D.【點睛】本題考查統(tǒng)計圖表的應用,考查數(shù)據處理能力,屬于基礎題.9.D【解析】

對于A根據命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,即可判斷出;對于B若向量滿足,則與的夾角為鈍角或平角;對于C當m=0時,滿足am2≤bm2,但是a≤b不一定成立;對于D根據元素與集合的關系即可做出判斷.【詳解】選項A根據命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,因此A不正確;選項B若向量滿足,則與的夾角為鈍角或平角,因此不正確.選項C當m=0時,滿足am2≤bm2,但是a≤b不一定成立,因此不正確;選項D若“”,則且,所以一定可以推出“”,因此“”是“”的必要條件,故正確.故選:D.【點睛】本題考查命題的真假判斷與應用,涉及知識點有含有量詞的命題的否定、不等式性質、向量夾角與性質、集合性質等,屬于簡單題.10.B【解析】

由為定值,可得,則是以3為周期的數(shù)列,求出,即求.【詳解】對任意的,均有為定值,,故,是以3為周期的數(shù)列,故,.故選:.【點睛】本題考查周期數(shù)列求和,屬于中檔題.11.C【解析】

利用分布列求出,求出期望,再利用期望的性質可求得結果.【詳解】由分布列的性質可得,得,所以,,因此,.故選:C.【點睛】本題考查離散型隨機變量的分布列以及期望的求法,是基本知識的考查.12.A【解析】

由,兩邊平方后展開整理,即可求得,則的長可求.【詳解】解:,,,,,,.,,故選:.【點睛】本題考查了向量的多邊形法則、數(shù)量積的運算性質、向量垂直與數(shù)量積的關系,考查了空間想象能力,考查了推理能力與計算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.11【解析】

由等差數(shù)列的下標和性質可得,由即可求出公差,即可求解;【詳解】解:設等差數(shù)列的公差為,,又因為,解得故答案為:【點睛】本題考查等差數(shù)列的通項公式及等差數(shù)列的性質的應用,屬于基礎題.14.【解析】

依題意可得、、、四點共圓,即可得到,從而得到三角形為正三角形,利用余弦定理可得,且,要使四棱錐體積最大,當且僅當面面時體積取得最大值,利用正弦定理求出的外接圓的半徑,再又可證面,則外接球的半徑,即可求出球的表面積;【詳解】解:依題意可得、、、四點共圓,所以因為,所以,,所以三角形為正三角形,則,,利用余弦定理得即,解得,則所以,當面面時,取得最大,所以的外接圓的半徑,又面面,,且面面,面所以面,所以外接球的半徑所以故答案為:【點睛】本題考查多面體的外接球的相關計算,正弦定理、余弦定理的應用,屬于中檔題.15.【解析】

根據,則當時,,即.當時,顯然成立;當時,由,轉化為,令,用導數(shù)法求其最大值即可.【詳解】因為,又當時,,即.當時,顯然成立;當時,由等價于,令,,當時,,單調遞增,當時,,單調遞減,,則,又,得,因此的最大值為.故答案為:【點睛】本題主要考查導數(shù)在函數(shù)中的應用,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.16.【解析】

設,,根據中點坐標公式可得坐標,利用可得到點坐標所滿足的方程,結合直線斜率可求得,進而求得;將點坐標代入雙曲線方程,結合焦點坐標可求得,進而得到離心率.【詳解】左焦點為,雙曲線的半焦距.設,,,,,,即,,即,又直線斜率為,即,,,,在雙曲線上,,即,結合可解得:,,離心率.故答案為:;.【點睛】本題考查直線與雙曲線的綜合應用問題,涉及到直線截雙曲線所得線段長度的求解、雙曲線離心率的求解問題;關鍵是能夠通過設點的方式,結合直線斜率、垂直關系、點在雙曲線上來構造方程組求得所需變量的值.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)答案不唯一,具體見解析(2)證明見解析【解析】

(1)根據題意得,分與討論即可得到函數(shù)的單調性;(2)根據題意構造函數(shù),得,參變分離得,分析不等式,即轉化為,設,再構造函數(shù),利用導數(shù)得單調性,進而得證.【詳解】(1)依題意,當時,,①當時,恒成立,此時在定義域上單調遞增;②當時,若,;若,;故此時的單調遞增區(qū)間為,單調遞減區(qū)間為.(2)方法1:由得令,則,依題意有,即,要證,只需證(不妨設),即證,令,設,則,在單調遞減,即,從而有.方法2:由得令,則,當時,時,故在上單調遞增,在上單調遞減,不妨設,則,要證,只需證,易知,故只需證,即證令,(),則==,(也可代入后再求導)在上單調遞減,,故對于時,總有.由此得【點睛】本題考查了函數(shù)的單調性、最值問題,考查導數(shù)的應用以及分類討論思想,轉化思想,屬于難題.18.(1);(2)證明見解析【解析】

(1)根據,,成等比數(shù)列,有,結合公差,,求得通項,再解不等式.(2)根據(1),用裂項相消法求和,然后研究其單調性即可.【詳解】(1)由題意,可知,即,∴.又,,∴,∴.∴,∴,故滿足題意的最大自然數(shù)為.(2),∴...從而當時,單調遞增,且,當時,單調遞增,且,所以,由,知不等式成立.【點睛】本題主要考查等差數(shù)列的基本運算和裂項相消法求和,還考查了運算求解的能力,屬于中檔題.19.(Ⅰ);(Ⅱ),;(Ⅲ)詳見解析.【解析】

(Ⅰ)由題知這只蜻蜓是種還是種的可能性是相等的,所以,代入數(shù)值運算即可;(Ⅱ)可判斷均值應為,再結合(1)和題干備注信息可得,進而求解;(Ⅲ)求得,該分布符合二項分布,故,列出分布列,計算出對應概率,結合即可求解;【詳解】(Ⅰ)記這只蜻蜓的翼長為.因為種蜻蜓和種蜻蜓的個體數(shù)量大致相等,所以這只蜻蜓是種還是種的可能性是相等的.所以.(Ⅱ)由于兩種蜻蜓的個體數(shù)量相等,的方差也相等,根據正態(tài)曲線的對稱性,可知由(Ⅰ)可知,得.(Ⅲ)設蜻蜓的翼長為,則.由題有,所以.因此的分布列為.【點睛】本題考查正態(tài)分布基本量的求解,二項分布求解離散型隨機變量分布列和期望,屬于中檔題20.(1)當時,在上遞增,在上遞減;當時,在上遞增,在上遞減,在上遞增;當時,在上遞增;當時,在上遞增,在上遞減,在上遞增;(2)證明見解析【解析】

(1)對求導,分,,進行討論,可得的單調性;(2)在定義域內是是增函數(shù),由(1)可知,,設,可得,則,設,對求導,利用其單調性可證明.【詳解】解:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論