版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數(shù)學模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在的展開式中,的系數(shù)為()A.-120 B.120 C.-15 D.152.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點,若,則λ+μ的值為()A. B. C. D.3.“”是“函數(shù)(為常數(shù))為冪函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件4.《普通高中數(shù)學課程標準(2017版)》提出了數(shù)學學科的六大核心素養(yǎng).為了比較甲、乙兩名高二學生的數(shù)學核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標對二人進行了測驗,根據(jù)測驗結果繪制了雷達圖(如圖,每項指標值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)高于乙B.甲的數(shù)學建模素養(yǎng)優(yōu)于數(shù)學抽象素養(yǎng)C.乙的六大素養(yǎng)中邏輯推理最差D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲5.已知P是雙曲線漸近線上一點,,是雙曲線的左、右焦點,,記,PO,的斜率為,k,,若,-2k,成等差數(shù)列,則此雙曲線的離心率為()A. B. C. D.6.已知函數(shù)的圖像的一條對稱軸為直線,且,則的最小值為()A. B.0 C. D.7.我國古代數(shù)學巨著《九章算術》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據(jù)上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.18.如圖,四邊形為正方形,延長至,使得,點在線段上運動.設,則的取值范圍是()A. B. C. D.9.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.610.集合的真子集的個數(shù)為()A.7 B.8 C.31 D.3211.已知函數(shù),則的最小值為()A. B. C. D.12.三棱錐中,側棱底面,,,,,則該三棱錐的外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,滿足,,,則向量在的夾角為______.14.在區(qū)間內任意取一個數(shù),則恰好為非負數(shù)的概率是________.15.函數(shù)的定義域是____________.(寫成區(qū)間的形式)16.若函數(shù)的圖像向左平移個單位得到函數(shù)的圖像.則在區(qū)間上的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當時,求曲線在點的切線方程;(2)討論函數(shù)的單調性.18.(12分)已知數(shù)列中,(實數(shù)為常數(shù)),是其前項和,且數(shù)列是等比數(shù)列,恰為與的等比中項.(1)證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的通項公式;(3)若,當時,的前項和為,求證:對任意,都有.19.(12分)已知函數(shù).(1)當時,解不等式;(2)當時,不等式恒成立,求實數(shù)的取值范圍.20.(12分)已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.(1)求橢圓的方程;(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.21.(12分)若關于的方程的兩根都大于2,求實數(shù)的取值范圍.22.(10分)記數(shù)列的前項和為,已知成等差數(shù)列.(1)證明:數(shù)列是等比數(shù)列,并求的通項公式;(2)記數(shù)列的前項和為,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
寫出展開式的通項公式,令,即,則可求系數(shù).【詳解】的展開式的通項公式為,令,即時,系數(shù)為.故選C【點睛】本題考查二項式展開的通項公式,屬基礎題.2.B【解析】
建立平面直角坐標系,用坐標表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標系,則D(0,0).不妨設AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B【點睛】本題主要考查了由平面向量線性運算的結果求參數(shù),屬于中檔題.3.A【解析】
根據(jù)冪函數(shù)定義,求得的值,結合充分條件與必要條件的概念即可判斷.【詳解】∵當函數(shù)為冪函數(shù)時,,解得或,∴“”是“函數(shù)為冪函數(shù)”的充分不必要條件.故選:A.【點睛】本題考查了充分必要條件的概念和判斷,冪函數(shù)定義的應用,屬于基礎題.4.D【解析】
根據(jù)雷達圖對選項逐一分析,由此確定敘述正確的選項.【詳解】對于A選項,甲的數(shù)據(jù)分析分,乙的數(shù)據(jù)分析分,甲低于乙,故A選項錯誤.對于B選項,甲的建模素養(yǎng)分,乙的建模素養(yǎng)分,甲低于乙,故B選項錯誤.對于C選項,乙的六大素養(yǎng)中,邏輯推理分,不是最差,故C選項錯誤.對于D選項,甲的總得分分,乙的總得分分,所以乙的六大素養(yǎng)整體平均水平優(yōu)于甲,故D選項正確.故選:D【點睛】本小題主要考查圖表分析和數(shù)據(jù)處理,屬于基礎題.5.B【解析】
求得雙曲線的一條漸近線方程,設出的坐標,由題意求得,運用直線的斜率公式可得,,,再由等差數(shù)列中項性質和離心率公式,計算可得所求值.【詳解】設雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設,,則,,,由,,成等差數(shù)列,可得,化為,即,可得,故選:.【點睛】本題考查雙曲線的方程和性質,主要是漸近線方程和離心率,考查方程思想和運算能力,意在考查學生對這些知識的理解掌握水平.6.D【解析】
運用輔助角公式,化簡函數(shù)的解析式,由對稱軸的方程,求得的值,得出函數(shù)的解析式,集合正弦函數(shù)的最值,即可求解,得到答案.【詳解】由題意,函數(shù)為輔助角,由于函數(shù)的對稱軸的方程為,且,即,解得,所以,又由,所以函數(shù)必須取得最大值和最小值,所以可設,,所以,當時,的最小值,故選D.【點睛】本題主要考查了正弦函數(shù)的圖象與性質,其中解答中利用三角恒等變換的公式,化簡函數(shù)的解析式,合理利用正弦函數(shù)的對稱性與最值是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.7.B【解析】
將問題轉化為等比數(shù)列問題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問題.【詳解】根據(jù)實際問題可以轉化為等比數(shù)列問題,在等比數(shù)列中,公比,前項和為,,,求的值.因為,解得,,解得.故選B.【點睛】本題考查等比數(shù)列的實際應用,難度較易.熟悉等比數(shù)列中基本量的計算,對于解決實際問題很有幫助.8.C【解析】
以為坐標原點,以分別為x軸,y軸建立直角坐標系,利用向量的坐標運算計算即可解決.【詳解】以為坐標原點建立如圖所示的直角坐標系,不妨設正方形的邊長為1,則,,設,則,所以,且,故.故選:C.【點睛】本題考查利用向量的坐標運算求變量的取值范圍,考查學生的基本計算能力,本題的關鍵是建立適當?shù)闹苯亲鴺讼?,是一道基礎題.9.C【解析】
根據(jù)列方程,由此求得的值,進而求得.【詳解】由于,所以,即,解得.所以所以.故選:C【點睛】本小題主要考查向量垂直的表示,考查向量數(shù)量積的運算,考查向量模的求法,屬于基礎題.10.A【解析】
計算,再計算真子集個數(shù)得到答案.【詳解】,故真子集個數(shù)為:.故選:.【點睛】本題考查了集合的真子集個數(shù),意在考查學生的計算能力.11.C【解析】
利用三角恒等變換化簡三角函數(shù)為標準正弦型三角函數(shù),即可容易求得最小值.【詳解】由于,故其最小值為:.故選:C.【點睛】本題考查利用降冪擴角公式、輔助角公式化簡三角函數(shù),以及求三角函數(shù)的最值,屬綜合基礎題.12.B【解析】由題,側棱底面,,,,則根據(jù)余弦定理可得,的外接圓圓心三棱錐的外接球的球心到面的距離則外接球的半徑,則該三棱錐的外接球的表面積為點睛:本題考查的知識點是球內接多面體,熟練掌握球的半徑公式是解答的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
把平方利用數(shù)量積的運算化簡即得解.【詳解】因為,,,所以,∴,∴,因為所以.故答案為:【點睛】本題主要考查平面向量的數(shù)量積的運算法則,考查向量的夾角的計算,意在考查學生對這些知識的理解掌握水平.14.【解析】
先分析非負數(shù)對應的區(qū)間長度,然后根據(jù)幾何概型中的長度模型,即可求解出“恰好為非負數(shù)”的概率.【詳解】當是非負數(shù)時,,區(qū)間長度是,又因為對應的區(qū)間長度是,所以“恰好為非負數(shù)”的概率是.故答案為:.【點睛】本題考查幾何概型中的長度模型,難度較易.解答問題的關鍵是能判斷出目標事件對應的區(qū)間長度.15.【解析】
要使函數(shù)有意義,需滿足,即,解得,故函數(shù)的定義域是.16.【解析】
注意平移是針對自變量x,所以,再利用整體換元法求值域(最值)即可.【詳解】由已知,,,又,故,,所以的最小值為.故答案為:.【點睛】本題考查正弦型函數(shù)在給定區(qū)間上的最值問題,涉及到圖象的平移變換、輔助角公式的應用,是一道基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)當時,在上單調遞增,在上單調遞減;當時,在和上單調遞增,在上單調遞減;當時,在上單調遞增;當時,在和上單調遞增,在上單調遞減.【解析】
(1)根據(jù)導數(shù)的幾何意義求解即可.(2)易得函數(shù)定義域是,且.故分,和與四種情況,分別分析得極值點的關系進而求得原函數(shù)的單調性即可.【詳解】(1)當時,,則切線的斜率為.又,則曲線在點的切線方程是,即.(2)的定義域是..①當時,,所以當時,;當時,,所以在上單調遞增,在上單調遞減;②當時,,所以當和時,;當時,,所以在和上單調遞增,在上單調遞減;③當時,,所以在上恒成立.所以在上單調遞增;④當時,,所以和時,;時,.所以在和上單調遞增,在上單調遞減.綜上所述,當時,在上單調遞增,在上單調遞減;當時,在和上單調遞增,在上單調遞減;當時,在上單調遞增;當時,在和上單調遞增,在上單調遞減.【點睛】本題主要考查了導數(shù)的幾何意義以及含參數(shù)的函數(shù)單調性討論,需要根據(jù)題意求函數(shù)的極值點,再根據(jù)極值點的大小關系分類討論即可.屬于常考題.18.(1)見解析(2)(3)見解析【解析】
(1)令可得,即.得到,再利用通項公式和前n項和的關系求解,(2)由(1)知,.設等比數(shù)列的公比為,所以,再根據(jù)恰為與的等比中項求解,(3)由(2)得到時,,,求得,再代入證明?!驹斀狻浚?)解:令可得,即.所以.時,可得,當時,所以.顯然當時,滿足上式.所以.,所以數(shù)列是等差數(shù)列,(2)由(1)知,.設等比數(shù)列的公比為,所以,恰為與的等比中項,所以,解得,所以(3)時,,,而時,,,所以當時,.當時,,∴對任意,都有,【點睛】本題主要考查數(shù)列的通項公式和前n項和的關系,等差數(shù)列,等比數(shù)列的定義和性質以及數(shù)列放縮的方法,還考查了轉化化歸的思想和運算求解的能力,屬于難題,19.(1);(2).【解析】
(1)分類討論去絕對值,得到每段的解集,然后取并集得到答案.(2)先得到的取值范圍,判斷,為正,去掉絕對值,轉化為在時恒成立,得到,,在恒成立,從而得到的取值范圍.【詳解】(1)當時,,由,得,即,或,即,或,即,綜上:或,所以不等式的解集為.(2),,因為,,所以,又,,,得.不等式恒成立,即在時恒成立,不等式恒成立必須,,解得.所以,解得,結合,所以,即的取值范圍為.【點睛】本題考查分類討論解絕對值不等式,含有絕對值的不等式的恒成立問題.屬于中檔題.20.(1);(2)存在,且方程為或.【解析】
(1)依題意列出關于a,b,c的方程組,求得a,b,進而可得到橢圓方程;(2)聯(lián)立直線和橢圓得到,要使以為直徑的圓過橢圓的左頂點,則,結合韋達定理可得到參數(shù)值.【詳解】(1)直線的一般方程為.依題意,解得,故橢圓的方程式為.(2)假若存在這樣的直線,當斜率不存在時,以為直徑的圓顯然不經(jīng)過橢圓的左頂點,所以可設直線的斜率為,則直線的方程為.由,得.由,得.記,的坐標分別為,,則,,而.要使以為直徑的圓過橢圓的左頂點,則,即,所以,整理解得或,所以存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點,直線的方程為或.【點睛】本題主要考查直線與圓錐曲線位置關系,所使用方法為韋達定理法:因直線的方程是一次的,圓錐曲線的方程是二次的,故直線與圓錐曲線的問題常轉化為方程組關系問題,最終轉化為一元二次方程問題,故用韋達定理及判別式是解決圓錐曲線問題的重點方法之一,尤其是弦中點問題,弦長問題,可用韋達定理直接解決,但應注意不要忽視判別式的作用.21.【解析】
先令,根據(jù)題中條件得到,求解,即可得出結果.【詳解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年消防給水工程智能化施工及維護服務合同3篇
- 2025變頻器代理商銷售合同:產(chǎn)品價格調整與結算協(xié)議3篇
- 2025年度紡織行業(yè)新材料研發(fā)與應用采購合同2篇
- 2025年度工業(yè)倉儲租賃及倉儲設施維護保養(yǎng)合同范本3篇
- 二零二五年房地產(chǎn)項目工程造價咨詢合同模板3篇
- 二零二四年員工自愿放棄社保及轉移待遇合同3篇
- 2025年度藝術展布展藝術品保護與搬運合同3篇
- 二零二五版二手房交易中介服務合同模板2篇
- 2024虛擬現(xiàn)實內容開發(fā)制作合同
- 2025年消防噴淋系統(tǒng)安裝及消防設施檢測與維保服務合同3篇
- 《FANUC-Oi數(shù)控銑床加工中心編程技巧與實例》教學課件(全)
- 微信小程序運營方案課件
- 抖音品牌視覺識別手冊
- 陳皮水溶性總生物堿的升血壓作用量-效關系及藥動學研究
- 安全施工專項方案報審表
- 學習解讀2022年新制定的《市場主體登記管理條例實施細則》PPT匯報演示
- 好氧廢水系統(tǒng)調試、驗收、運行、維護手冊
- 中石化ERP系統(tǒng)操作手冊
- 五年級上冊口算+脫式計算+豎式計算+方程
- 氣體管道安全管理規(guī)程
- 《眼科學》題庫
評論
0/150
提交評論