版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知橢圓:的左,右焦點(diǎn)分別為,,過的直線交橢圓于,兩點(diǎn),若,且的三邊長,,成等差數(shù)列,則的離心率為()A. B. C. D.2.一小商販準(zhǔn)備用元錢在一批發(fā)市場購買甲、乙兩種小商品,甲每件進(jìn)價(jià)元,乙每件進(jìn)價(jià)元,甲商品每賣出去件可賺元,乙商品每賣出去件可賺元.該商販若想獲取最大收益,則購買甲、乙兩種商品的件數(shù)應(yīng)分別為()A.甲件,乙件 B.甲件,乙件 C.甲件,乙件 D.甲件,乙件3.在中,,則()A. B. C. D.4.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.5.的圖象如圖所示,,若將的圖象向左平移個(gè)單位長度后所得圖象與的圖象重合,則可取的值的是()A. B. C. D.6.若集合,,則()A. B. C. D.7.已知復(fù)數(shù)滿足:(為虛數(shù)單位),則()A. B. C. D.8.在中,,則=()A. B.C. D.9.某三棱錐的三視圖如圖所示,網(wǎng)格紙上小正方形的邊長為,則該三棱錐外接球的表面積為()A. B. C. D.10.已知函數(shù)在區(qū)間上恰有四個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.11.已知角的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊與軸的非負(fù)半軸重合,終邊上有一點(diǎn),則().A. B. C. D.12.已知函數(shù)的零點(diǎn)為m,若存在實(shí)數(shù)n使且,則實(shí)數(shù)a的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件則的最大值為__________.14.己知函數(shù),若關(guān)于的不等式對任意的恒成立,則實(shí)數(shù)的取值范圍是______.15.已知角的終邊過點(diǎn),則______.16.在的展開式中,所有的奇數(shù)次冪項(xiàng)的系數(shù)和為-64,則實(shí)數(shù)的值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績分布在的范圍內(nèi),規(guī)定分?jǐn)?shù)在50以上(含50)的作文被評為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績作為樣本,得到成績的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.(1)求的值;(2)填寫下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過0.01的情況下認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)?文科生理科生合計(jì)獲獎(jiǎng)6不獲獎(jiǎng)合計(jì)400(3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學(xué)生中,任意抽取2名學(xué)生,記“獲得優(yōu)秀作文”的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸.呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)的對入院人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:患心肺疾病不患心肺疾病合計(jì)男女合計(jì)已知在全部人中隨機(jī)抽取人,抽到患心肺疾病的人的概率為.(1)請將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為患心肺疾病與性別有關(guān)?請說明你的理由;(2)已知在不患心肺疾病的位男性中,有位從事的是戶外作業(yè)的工作.為了指導(dǎo)市民盡可能地減少因霧霾天氣對身體的傷害,現(xiàn)從不患心肺疾病的位男性中,選出人進(jìn)行問卷調(diào)查,求所選的人中至少有一位從事的是戶外作業(yè)的概率.下面的臨界值表供參考:(參考公式,其中)19.(12分)已知函數(shù),,且.(1)當(dāng)時(shí),求函數(shù)的減區(qū)間;(2)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;(3)若方程的兩個(gè)實(shí)數(shù)根是,試比較,與的大小,并說明理由.20.(12分)已知是圓:的直徑,動(dòng)圓過,兩點(diǎn),且與直線相切.(1)若直線的方程為,求的方程;(2)在軸上是否存在一個(gè)定點(diǎn),使得以為直徑的圓恰好與軸相切?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.21.(12分)已知,,函數(shù)的最小值為.(1)求證:;(2)若恒成立,求實(shí)數(shù)的最大值.22.(10分)中國古代數(shù)學(xué)經(jīng)典《數(shù)書九章》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱為“陽馬”,將四個(gè)面都為直角三角形的四面體稱之為“鱉臑”.在如圖所示的陽馬中,底面ABCD是矩形.平面,,,以的中點(diǎn)O為球心,AC為直徑的球面交PD于M(異于點(diǎn)D),交PC于N(異于點(diǎn)C).(1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個(gè)面的直角(只需寫出結(jié)論);若不是,請說明理由;(2)求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
根據(jù)等差數(shù)列的性質(zhì)設(shè)出,,,利用勾股定理列方程,結(jié)合橢圓的定義,求得.再利用勾股定理建立的關(guān)系式,化簡后求得離心率.【詳解】由已知,,成等差數(shù)列,設(shè),,.由于,據(jù)勾股定理有,即,化簡得;由橢圓定義知的周長為,有,所以,所以;在直角中,由勾股定理,,∴離心率.故選:C【點(diǎn)睛】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數(shù)列的性質(zhì),屬于中檔題.2.D【解析】
由題意列出約束條件和目標(biāo)函數(shù),數(shù)形結(jié)合即可解決.【詳解】設(shè)購買甲、乙兩種商品的件數(shù)應(yīng)分別,利潤為元,由題意,畫出可行域如圖所示,顯然當(dāng)經(jīng)過時(shí),最大.故選:D.【點(diǎn)睛】本題考查線性目標(biāo)函數(shù)的線性規(guī)劃問題,解決此類問題要注意判斷,是否是整數(shù),是否是非負(fù)數(shù),并準(zhǔn)確的畫出可行域,本題是一道基礎(chǔ)題.3.A【解析】
先根據(jù)得到為的重心,從而,故可得,利用可得,故可計(jì)算的值.【詳解】因?yàn)樗詾榈闹匦?,所?所以,所以,因?yàn)?,所以,故選A.【點(diǎn)睛】對于,一般地,如果為的重心,那么,反之,如果為平面上一點(diǎn),且滿足,那么為的重心.4.D【解析】
先根據(jù)已知條件求解出的通項(xiàng)公式,然后根據(jù)的單調(diào)性以及得到滿足的不等關(guān)系,由此求解出的取值范圍.【詳解】由已知得,則.因?yàn)椋瑪?shù)列是單調(diào)遞增數(shù)列,所以,則,化簡得,所以.故選:D.【點(diǎn)睛】本題考查數(shù)列通項(xiàng)公式求解以及根據(jù)數(shù)列單調(diào)性求解參數(shù)范圍,難度一般.已知數(shù)列單調(diào)性,可根據(jù)之間的大小關(guān)系分析問題.5.B【解析】
根據(jù)圖象求得函數(shù)的解析式,即可得出函數(shù)的解析式,然后求出變換后的函數(shù)解析式,結(jié)合題意可得出關(guān)于的等式,即可得出結(jié)果.【詳解】由圖象可得,函數(shù)的最小正周期為,,,則,,取,,則,,,可得,當(dāng)時(shí),.故選:B.【點(diǎn)睛】本題考查利用圖象求函數(shù)解析式,同時(shí)也考查了利用函數(shù)圖象變換求參數(shù),考查計(jì)算能力,屬于中等題.6.A【解析】
用轉(zhuǎn)化的思想求出中不等式的解集,再利用并集的定義求解即可.【詳解】解:由集合,解得,則故選:.【點(diǎn)睛】本題考查了并集及其運(yùn)算,分式不等式的解法,熟練掌握并集的定義是解本題的關(guān)鍵.屬于基礎(chǔ)題.7.A【解析】
利用復(fù)數(shù)的乘法、除法運(yùn)算求出,再根據(jù)共軛復(fù)數(shù)的概念即可求解.【詳解】由,則,所以.故選:A【點(diǎn)睛】本題考查了復(fù)數(shù)的四則運(yùn)算、共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.8.B【解析】
在上分別取點(diǎn),使得,可知為平行四邊形,從而可得到,即可得到答案.【詳解】如下圖,,在上分別取點(diǎn),使得,則為平行四邊形,故,故答案為B.【點(diǎn)睛】本題考查了平面向量的線性運(yùn)算,考查了學(xué)生邏輯推理能力,屬于基礎(chǔ)題.9.C【解析】
作出三棱錐的實(shí)物圖,然后補(bǔ)成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球?yàn)橥粋€(gè)球,然后計(jì)算出矩形的外接圓直徑,利用公式可計(jì)算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實(shí)物圖如下圖所示:將其補(bǔ)成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點(diǎn)睛】本題考查三棱錐外接球的表面積,解題時(shí)要結(jié)合三視圖作出三棱錐的實(shí)物圖,并分析三棱錐的結(jié)構(gòu),選擇合適的模型進(jìn)行計(jì)算,考查推理能力與計(jì)算能力,屬于中等題.10.A【解析】
函數(shù)的零點(diǎn)就是方程的解,設(shè),方程可化為,即或,求出的導(dǎo)數(shù),利用導(dǎo)數(shù)得出函數(shù)的單調(diào)性和最值,由此可根據(jù)方程解的個(gè)數(shù)得出的范圍.【詳解】由題意得有四個(gè)大于的不等實(shí)根,記,則上述方程轉(zhuǎn)化為,即,所以或.因?yàn)椋?dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;所以在處取得最小值,最小值為.因?yàn)?,所以有兩個(gè)符合條件的實(shí)數(shù)解,故在區(qū)間上恰有四個(gè)不相等的零點(diǎn),需且.故選:A.【點(diǎn)睛】本題考查復(fù)合函數(shù)的零點(diǎn).考查轉(zhuǎn)化與化歸思想,函數(shù)零點(diǎn)轉(zhuǎn)化為方程的解,方程的解再轉(zhuǎn)化為研究函數(shù)的性質(zhì),本題考查了學(xué)生分析問題解決問題的能力.11.B【解析】
根據(jù)角終邊上的點(diǎn)坐標(biāo),求得,代入二倍角公式即可求得的值.【詳解】因?yàn)榻K邊上有一點(diǎn),所以,故選:B【點(diǎn)睛】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡單題目.12.D【解析】
易知單調(diào)遞增,由可得唯一零點(diǎn),通過已知可求得,則問題轉(zhuǎn)化為使方程在區(qū)間上有解,化簡可得,借助對號(hào)函數(shù)即可解得實(shí)數(shù)a的取值范圍.【詳解】易知函數(shù)單調(diào)遞增且有惟一的零點(diǎn)為,所以,∴,問題轉(zhuǎn)化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對勾函數(shù)”可知函數(shù)在區(qū)間的值域?yàn)椋?故選D.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)問題,考查了方程有解問題,分離參數(shù)法及構(gòu)造函數(shù)法的應(yīng)用,考查了利用“對勾函數(shù)”求參數(shù)取值范圍問題,難度較難.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
先畫出約束條件的可行域,根據(jù)平移法判斷出最優(yōu)點(diǎn),代入目標(biāo)函數(shù)的解析式,易可得到目標(biāo)函數(shù)的最大值.【詳解】解:由約束條件得如圖所示的三角形區(qū)域,由于,則,要求的最大值,則求的截距的最小值,顯然當(dāng)平行直線過點(diǎn)時(shí),取得最大值為:.故答案為:1.【點(diǎn)睛】本題考查線性規(guī)劃求最值問題,我們常用幾何法求最值.14.【解析】
首先判斷出函數(shù)為定義在上的奇函數(shù),且在定義域上單調(diào)遞增,由此不等式對任意的恒成立,可轉(zhuǎn)化為在上恒成立,進(jìn)而建立不等式組,解出即可得到答案.【詳解】解:函數(shù)的定義域?yàn)?,且,函?shù)為奇函數(shù),當(dāng)時(shí),函數(shù),顯然此時(shí)函數(shù)為增函數(shù),函數(shù)為定義在上的增函數(shù),不等式即為,在上恒成立,,解得.故答案為.【點(diǎn)睛】本題考查函數(shù)單調(diào)性及奇偶性的綜合運(yùn)用,考查不等式的恒成立問題,屬于常規(guī)題目.15.【解析】
由題意利用任意角的三角函數(shù)的定義,兩角和差正弦公式,求得的值.【詳解】解:∵角的終邊過點(diǎn),∴,,∴,故答案為:.【點(diǎn)睛】本題主要考查任意角的三角函數(shù)的定義,兩角和差正弦公式,屬于基礎(chǔ)題.16.3或-1【解析】
設(shè),分別令、,兩式相減即可得,即可得解.【詳解】設(shè),令,則①,令,則②,則①-②得,則,解得或.故答案為:3或-1.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了運(yùn)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),,.(2)填表見解析;在犯錯(cuò)誤的概率不超過0.01的情況下,不能認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)(3)詳見解析【解析】
(1)根據(jù)頻率分步直方圖和構(gòu)成以2為公比的等比數(shù)列,即可得解;(2)由頻率分步直方圖算出相應(yīng)的頻數(shù)即可填寫列聯(lián)表,再用的計(jì)算公式運(yùn)算即可;(3)獲獎(jiǎng)的概率為,隨機(jī)變量,再根據(jù)二項(xiàng)分布即可求出其分布列與期望.【詳解】解:(1)由頻率分布直方圖可知,,因?yàn)闃?gòu)成以2為公比的等比數(shù)列,所以,解得,所以,.故,,.(2)獲獎(jiǎng)的人數(shù)為人,因?yàn)閰⒖嫉奈目粕c理科生人數(shù)之比為,所以400人中文科生的數(shù)量為,理科生的數(shù)量為.由表可知,獲獎(jiǎng)的文科生有6人,所以獲獎(jiǎng)的理科生有人,不獲獎(jiǎng)的文科生有人.于是可以得到列聯(lián)表如下:文科生理科生合計(jì)獲獎(jiǎng)61420不獲獎(jiǎng)74306380合計(jì)80320400所以在犯錯(cuò)誤的概率不超過0.01的情況下,不能認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān).(3)由(2)可知,獲獎(jiǎng)的概率為,的可能取值為0,1,2,,,,分布列如下:012數(shù)學(xué)期望為.【點(diǎn)睛】本題考查頻率分布直方圖、統(tǒng)計(jì)案例和離散型隨機(jī)變量的分布列與期望,考查學(xué)生的閱讀理解能力和計(jì)算能力,屬于中檔題.18.(1)列聯(lián)表見解析,有的把握認(rèn)為患心肺疾病與性別有關(guān),理由見解析;(2).【解析】
(1)結(jié)合題意完善列聯(lián)表,計(jì)算出的觀測值,對照臨界值表可得出結(jié)論;(2)記不患心肺疾病的五位男性中從事戶外作業(yè)的兩人分別為、,其余三人分別為、、,利用列舉法列舉出所有的基本事件,并確定事件“所選的人中至少有一位從事的是戶外作業(yè)”所包含的基本事件數(shù),利用古典概型的概率公式可取得所求事件的概率.【詳解】(1)由于在全部人中隨機(jī)抽取人,抽到患心肺疾病的人的概率為,所以人中患心肺疾病的人數(shù)為人,故可將列聯(lián)表補(bǔ)充如下:患心肺疾病不患心肺疾病合計(jì)男女合計(jì).故有的把握認(rèn)為患心肺疾病與性別有關(guān);(2)記不患心肺疾病的五位男性中從事戶外作業(yè)的兩人分別為、,其余三人分別為、、.從中選取三人共有以下種情形:、、、、、、、、、.其中至少有一位從事的是戶外作業(yè)的有種情形,分別為:、、、、、、、、,所以所選的人中至少有一位從事的是戶外作業(yè)的概率為.【點(diǎn)睛】本題考查利用獨(dú)立性檢驗(yàn)的基本思想解決實(shí)際問題,同時(shí)也考查了利用列舉法求解古典概型的概率問題,考查計(jì)算能力,屬于中等題.19.(1)(2)詳見解析(3)【解析】
試題分析:(1)當(dāng)時(shí),,由得減區(qū)間;(2)因?yàn)椋?,因?yàn)樗裕匠逃袃蓚€(gè)不相等的實(shí)數(shù)根;(3)因?yàn)椋?,所以試題解析:(1)當(dāng)時(shí),,由得減區(qū)間;(2)法1:,,,所以,方程有兩個(gè)不相等的實(shí)數(shù)根;法2:,,是開口向上的二次函數(shù),所以,方程有兩個(gè)不相等的實(shí)數(shù)根;(3)因?yàn)?,,又在和增,在減,所以.考點(diǎn):利用導(dǎo)數(shù)求函數(shù)減區(qū)間,二次函數(shù)與二次方程關(guān)系20.(1)或.(2)存在,;【解析】
(1)根據(jù)動(dòng)圓過,兩點(diǎn),可得圓心在的垂直平分線上,由直線的方程為,可知在直線上;設(shè),由動(dòng)圓與直線相切可得動(dòng)圓的半徑為;又由,及垂徑定理即可確定的值,進(jìn)而確定圓的方程.(2)方法一:設(shè),可得圓的半徑為,根據(jù),可得方程為并化簡可得的軌跡方程為.設(shè),,可得的中點(diǎn),進(jìn)而由兩點(diǎn)間距離公式表示出半徑,表示出到軸的距離,代入化簡即可求得的值,進(jìn)而確定所過定點(diǎn)的坐標(biāo);方法二:同上可得的軌跡方程為,由拋物線定義可求得,表示出線段的中點(diǎn)的坐標(biāo),根據(jù)到軸的距離可得等量關(guān)系,進(jìn)而確定所過定點(diǎn)的坐標(biāo).【詳解】(1)因?yàn)檫^點(diǎn),,所以圓心在的垂直平分線上.由已知的方程為,且,關(guān)于于坐標(biāo)原點(diǎn)對稱,所以在直線上,故可設(shè).因?yàn)榕c直線相切,所以的半徑為.由已知得,,又,故可得,解得或.故的半徑或,所以的方程為或.(2)法一:設(shè),由已知得的半徑為,.由于,故可得,化簡得的軌跡方程為.設(shè),,則得,的中點(diǎn),則以為直徑的圓的半徑為:,到軸的距離為,令,①化簡得,即,故當(dāng)時(shí),①式恒成立.所以存在定點(diǎn),使得以為直徑的圓與軸相切.法二:設(shè),由已知得的半徑為,.由于,故可得,化簡得的軌跡方程為.設(shè),因?yàn)閽佄锞€的焦點(diǎn)坐標(biāo)為,點(diǎn)在拋物線上,所以,線段的中點(diǎn)的坐標(biāo)為,則到軸的距離為,而,故以為徑的圓與軸切,所以當(dāng)點(diǎn)與重合時(shí),符合題意
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024有債務(wù)離婚協(xié)議書
- 2024攝影工作室影視制作項(xiàng)目拍攝執(zhí)行合同范本3篇
- 中國地質(zhì)大學(xué)(武漢)《管理型財(cái)會(huì)仿真實(shí)訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江萬里學(xué)院《金屬塑性成形工藝與模具設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 長江師范學(xué)院《定量分析化學(xué)實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年度新材料研發(fā)及產(chǎn)業(yè)化合作協(xié)議3篇
- 銀行工作總結(jié)人才培養(yǎng)鑄就輝煌
- 2025年度精密儀器設(shè)備安裝與承包裝卸協(xié)議3篇
- 教育培訓(xùn)行業(yè)話務(wù)員工作內(nèi)容
- 互聯(lián)網(wǎng)行業(yè)前臺(tái)工作總結(jié)
- 35kV線路工程電桿組立工程施工組織方案
- QC成果提高鋼結(jié)構(gòu)焊縫一次合格率
- 森林報(bào)測試題
- 刑法涉及安全生產(chǎn)的16宗罪解讀
- 銅精礦加工費(fèi)簡析
- 機(jī)電拆除專項(xiàng)施工方案
- 平鍵鍵槽的尺寸與公差
- 8S目視化管理實(shí)施計(jì)劃表(放大)
- 分式混合運(yùn)算專項(xiàng)練習(xí)158題(有答案)26頁
- 牛津譯林版四年級英語上冊專項(xiàng)訓(xùn)練排序
- 畢業(yè)設(shè)計(jì)(論文)-多軸自動(dòng)螺栓擰緊機(jī)的設(shè)計(jì)
評論
0/150
提交評論