版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
云南省紅河州二中2025年高三下學(xué)期第三次月考數(shù)學(xué)試題文試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.德國數(shù)學(xué)家萊布尼茲(1646年-1716年)于1674年得到了第一個(gè)關(guān)于π的級(jí)數(shù)展開式,該公式于明朝初年傳入我國.在我國科技水平業(yè)已落后的情況下,我國數(shù)學(xué)家?天文學(xué)家明安圖(1692年-1765年)為提高我國的數(shù)學(xué)研究水平,從乾隆初年(1736年)開始,歷時(shí)近30年,證明了包括這個(gè)公式在內(nèi)的三個(gè)公式,同時(shí)求得了展開三角函數(shù)和反三角函數(shù)的6個(gè)新級(jí)數(shù)公式,著有《割圓密率捷法》一書,為我國用級(jí)數(shù)計(jì)算π開創(chuàng)了先河.如圖所示的程序框圖可以用萊布尼茲“關(guān)于π的級(jí)數(shù)展開式”計(jì)算π的近似值(其中P表示π的近似值),若輸入,則輸出的結(jié)果是()A. B.C. D.2.若命題p:從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內(nèi)任取一點(diǎn)M,則∠AMB>90°的概率為π8A.p∧qB.(?p)∧qC.p∧(?q)D.?q3.執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關(guān)于的判斷條件是()A. B. C. D.4.等腰直角三角形BCD與等邊三角形ABD中,,,現(xiàn)將沿BD折起,則當(dāng)直線AD與平面BCD所成角為時(shí),直線AC與平面ABD所成角的正弦值為()A. B. C. D.5.若不等式對(duì)于一切恒成立,則的最小值是()A.0 B. C. D.6.一個(gè)算法的程序框圖如圖所示,若該程序輸出的結(jié)果是,則判斷框中應(yīng)填入的條件是()A. B. C. D.7.拋物線方程為,一直線與拋物線交于兩點(diǎn),其弦的中點(diǎn)坐標(biāo)為,則直線的方程為()A. B. C. D.8.已知為虛數(shù)單位,若復(fù)數(shù),則A. B.C. D.9.在的展開式中,的系數(shù)為()A.-120 B.120 C.-15 D.1510.已知△ABC中,.點(diǎn)P為BC邊上的動(dòng)點(diǎn),則的最小值為()A.2 B. C. D.11.為比較甲、乙兩名高中學(xué)生的數(shù)學(xué)素養(yǎng),對(duì)課程標(biāo)準(zhǔn)中規(guī)定的數(shù)學(xué)六大素養(yǎng)進(jìn)行指標(biāo)測(cè)驗(yàn)(指標(biāo)值滿分為100分,分值高者為優(yōu)),根據(jù)測(cè)驗(yàn)情況繪制了如圖所示的六大素養(yǎng)指標(biāo)雷達(dá)圖,則下面敘述不正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙 B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙 D.甲的六大素養(yǎng)中數(shù)學(xué)運(yùn)算最強(qiáng)12.若復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,則實(shí)數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的兩條漸近線斜率分別為,,若,則該雙曲線的離心率為________.14.在直角三角形中,為直角,,點(diǎn)在線段上,且,若,則的正切值為_____.15.已知函數(shù)有兩個(gè)極值點(diǎn)、,則的取值范圍為_________.16.曲線在點(diǎn)處的切線方程為__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在多面體中,四邊形是正方形,平面,,,為的中點(diǎn).(1)求證:;(2)求平面與平面所成角的正弦值.18.(12分)已知直線是曲線的切線.(1)求函數(shù)的解析式,(2)若,證明:對(duì)于任意,有且僅有一個(gè)零點(diǎn).19.(12分)已知函數(shù),.(1)若不等式的解集為,求的值.(2)若當(dāng)時(shí),,求的取值范圍.20.(12分)已知函數(shù)的圖象向左平移后與函數(shù)圖象重合.(1)求和的值;(2)若函數(shù),求的單調(diào)遞增區(qū)間及圖象的對(duì)稱軸方程.21.(12分)已知函數(shù).(1)當(dāng)時(shí),求的單調(diào)區(qū)間;(2)若函數(shù)有兩個(gè)極值點(diǎn),,且,為的導(dǎo)函數(shù),設(shè),求的取值范圍,并求取到最小值時(shí)所對(duì)應(yīng)的的值.22.(10分)傳染病的流行必須具備的三個(gè)基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個(gè)環(huán)節(jié)必須同時(shí)存在,方能構(gòu)成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應(yīng)該佩戴口罩.某地區(qū)已經(jīng)出現(xiàn)了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識(shí)和防控情況,用分層抽樣的方法從全體居民中抽出一個(gè)容量為100的樣本,統(tǒng)計(jì)樣本中每個(gè)人出行是否會(huì)佩戴口罩的情況,得到下面列聯(lián)表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握認(rèn)為是否會(huì)佩戴口罩出行的行為與年齡有關(guān)?(2)用樣本估計(jì)總體,若從該地區(qū)出行不戴口罩的居民中隨機(jī)抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
執(zhí)行給定的程序框圖,輸入,逐次循環(huán),找到計(jì)算的規(guī)律,即可求解.【詳解】由題意,執(zhí)行給定的程序框圖,輸入,可得:第1次循環(huán):;第2次循環(huán):;第3次循環(huán):;第10次循環(huán):,此時(shí)滿足判定條件,輸出結(jié)果,故選:B.本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計(jì)算與輸出,其中解答中認(rèn)真審題,逐次計(jì)算,得到程序框圖的計(jì)算功能是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.2.B【解析】因?yàn)閺挠?件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為P1=1C42=16,即命題p是錯(cuò)誤,則?p是正確的;在邊長為4的正方形ABCD內(nèi)任取一點(diǎn)M點(diǎn)睛:本題將古典型概率公式、幾何型概率公式與命題的真假(含或、且、非等連接詞)的命題構(gòu)成的復(fù)合命題的真假的判定有機(jī)地整合在一起,旨在考查命題真假的判定及古典概型的特征與計(jì)算公式的運(yùn)用、幾何概型的特征與計(jì)算公式的運(yùn)用等知識(shí)與方法的綜合運(yùn)用,以及分析問題解決問題的能力。3.B【解析】
根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結(jié)束循環(huán),即可得出判斷條件.【詳解】執(zhí)行框圖如下:初始值:,第一步:,此時(shí)不能輸出,繼續(xù)循環(huán);第二步:,此時(shí)不能輸出,繼續(xù)循環(huán);第三步:,此時(shí)不能輸出,繼續(xù)循環(huán);第四步:,此時(shí)不能輸出,繼續(xù)循環(huán);第五步:,此時(shí)不能輸出,繼續(xù)循環(huán);第六步:,此時(shí)要輸出,結(jié)束循環(huán);故,判斷條件為.故選B本題主要考查完善程序框圖,只需逐步執(zhí)行框圖,結(jié)合輸出結(jié)果,即可確定判斷條件,屬于??碱}型.4.A【解析】
設(shè)E為BD中點(diǎn),連接AE、CE,過A作于點(diǎn)O,連接DO,得到即為直線AD與平面BCD所成角的平面角,根據(jù)題中條件求得相應(yīng)的量,分析得到即為直線AC與平面ABD所成角,進(jìn)而求得其正弦值,得到結(jié)果.【詳解】設(shè)E為BD中點(diǎn),連接AE、CE,由題可知,,所以平面,過A作于點(diǎn)O,連接DO,則平面,所以即為直線AD與平面BCD所成角的平面角,所以,可得,在中可得,又,即點(diǎn)O與點(diǎn)C重合,此時(shí)有平面,過C作與點(diǎn)F,又,所以,所以平面,從而角即為直線AC與平面ABD所成角,,故選:A.該題考查的是有關(guān)平面圖形翻折問題,涉及到的知識(shí)點(diǎn)有線面角的正弦值的求解,在解題的過程中,注意空間角的平面角的定義,屬于中檔題目.5.C【解析】
試題分析:將參數(shù)a與變量x分離,將不等式恒成立問題轉(zhuǎn)化為求函數(shù)最值問題,即可得到結(jié)論.解:不等式x2+ax+1≥0對(duì)一切x∈(0,]成立,等價(jià)于a≥-x-對(duì)于一切成立,∵y=-x-在區(qū)間上是增函數(shù)∴∴a≥-∴a的最小值為-故答案為C.考點(diǎn):不等式的應(yīng)用點(diǎn)評(píng):本題綜合考查了不等式的應(yīng)用、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題6.D【解析】
首先判斷循環(huán)結(jié)構(gòu)類型,得到判斷框內(nèi)的語句性質(zhì),然后對(duì)循環(huán)體進(jìn)行分析,找出循環(huán)規(guī)律,判斷輸出結(jié)果與循環(huán)次數(shù)以及的關(guān)系,最終得出選項(xiàng).【詳解】經(jīng)判斷此循環(huán)為“直到型”結(jié)構(gòu),判斷框?yàn)樘鲅h(huán)的語句,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,此時(shí)退出循環(huán),根據(jù)判斷框內(nèi)為跳出循環(huán)的語句,,故選D.題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問題時(shí)一定注意以下幾點(diǎn):(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問題時(shí)一定要正確控制循環(huán)次數(shù);(5)要注意各個(gè)框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運(yùn)算方法逐次計(jì)算,直到達(dá)到輸出條件即可.7.A【解析】
設(shè),,利用點(diǎn)差法得到,所以直線的斜率為2,又過點(diǎn),再利用點(diǎn)斜式即可得到直線的方程.【詳解】解:設(shè),∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過點(diǎn),∴直線的方程為:,即,故選:A.本題考查直線與拋物線相交的中點(diǎn)弦問題,解題方法是“點(diǎn)差法”,即設(shè)出弦的兩端點(diǎn)坐標(biāo),代入拋物線方程相減后可把弦所在直線斜率與中點(diǎn)坐標(biāo)建立關(guān)系.8.B【解析】
因?yàn)?,所以,故選B.9.C【解析】
寫出展開式的通項(xiàng)公式,令,即,則可求系數(shù).【詳解】的展開式的通項(xiàng)公式為,令,即時(shí),系數(shù)為.故選C本題考查二項(xiàng)式展開的通項(xiàng)公式,屬基礎(chǔ)題.10.D【解析】
以BC的中點(diǎn)為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,可得,設(shè),運(yùn)用向量的坐標(biāo)表示,求得點(diǎn)A的軌跡,進(jìn)而得到關(guān)于a的二次函數(shù),可得最小值.【詳解】以BC的中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖的直角坐標(biāo)系,可得,設(shè),由,可得,即,則,當(dāng)時(shí),的最小值為.故選D.本題考查向量數(shù)量積的坐標(biāo)表示,考查轉(zhuǎn)化思想和二次函數(shù)的值域解法,考查運(yùn)算能力,屬于中檔題.11.D【解析】
根據(jù)所給的雷達(dá)圖逐個(gè)選項(xiàng)分析即可.【詳解】對(duì)于A,甲的數(shù)據(jù)分析素養(yǎng)為100分,乙的數(shù)據(jù)分析素養(yǎng)為80分,故甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙,故A正確;對(duì)于B,乙的數(shù)據(jù)分析素養(yǎng)為80分,數(shù)學(xué)建模素養(yǎng)為60分,故乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學(xué)建模素養(yǎng),故B正確;對(duì)于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對(duì)于D,甲的六大素養(yǎng)中數(shù)學(xué)運(yùn)算為80分,不是最強(qiáng)的,故D錯(cuò)誤;故選:D本題考查了樣本數(shù)據(jù)的特征、平均數(shù)的計(jì)算,考查了學(xué)生的數(shù)據(jù)處理能力,屬于基礎(chǔ)題.12.B【解析】
復(fù)數(shù),在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,可得關(guān)于a的不等式組,解得a的范圍.【詳解】,由其在復(fù)平面對(duì)應(yīng)的點(diǎn)在第二象限,得,則.故選:B.本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義、不等式的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】
由題得,再根據(jù)求解即可.【詳解】雙曲線的兩條漸近線為,可令,,則,所以,解得.故答案為:2.本題考查雙曲線漸近線求離心率的問題.屬于基礎(chǔ)題.14.3【解析】
在直角三角形中設(shè),,,利用兩角差的正切公式求解.【詳解】設(shè),,則,故.故答案為:3此題考查在直角三角形中求角的正切值,關(guān)鍵在于合理構(gòu)造角的和差關(guān)系,其本質(zhì)是利用兩角差的正切公式求解.15.【解析】
確定函數(shù)的定義域,求導(dǎo)函數(shù),利用極值的定義,建立方程,結(jié)合韋達(dá)定理,即可求的取值范圍.【詳解】函數(shù)的定義域?yàn)椋?,依題意,方程有兩個(gè)不等的正根、(其中),則,由韋達(dá)定理得,,所以,令,則,,當(dāng)時(shí),,則函數(shù)在上單調(diào)遞減,則,所以,函數(shù)在上單調(diào)遞減,所以,.因此,的取值范圍是.故答案為:.本題考查了函數(shù)極值點(diǎn)問題,考查了函數(shù)的單調(diào)性、最值,將的取值范圍轉(zhuǎn)化為以為自變量的函數(shù)的值域問題是解答的關(guān)鍵,考查計(jì)算能力,屬于中等題.16.【解析】
對(duì)函數(shù)求導(dǎo)后,代入切點(diǎn)的橫坐標(biāo)得到切線斜率,然后根據(jù)直線方程的點(diǎn)斜式,即可寫出切線方程.【詳解】因?yàn)椋?,從而切線的斜率,所以切線方程為,即.故答案為:本題主要考查過曲線上一點(diǎn)的切線方程的求法,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】
(1)首先證明,,,∴平面.即可得到平面,.(2)以為坐標(biāo)原點(diǎn),,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系,分別求出平面和平面的法向量,帶入公式求解即可.【詳解】(1)∵平面,平面,∴.又∵四邊形是正方形,∴.∵,∴平面.∵平面,∴.又∵,為的中點(diǎn),∴.∵,∴平面.∵平面,∴.(2)∵平面,,∴平面.以為坐標(biāo)原點(diǎn),,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系.如圖所示:則,,,.∴,,.設(shè)為平面的法向量,則,得,令,則.由題意知為平面的一個(gè)法向量,∴,∴平面與平面所成角的正弦值為.本題第一問考查線線垂直,先證線面垂直時(shí)解題關(guān)鍵,第二問考查二面角,建立空間直角坐標(biāo)系是解題關(guān)鍵,屬于中檔題.18.(1)(2)證明見解析【解析】
(1)對(duì)函數(shù)求導(dǎo),并設(shè)切點(diǎn),利用點(diǎn)既在曲線上、又在切線上,列出方程組,解得,即可得答案;(2)當(dāng)x充分小時(shí),當(dāng)x充分大時(shí),可得至少有一個(gè)零點(diǎn).再證明零點(diǎn)的唯一性,即對(duì)函數(shù)求導(dǎo)得,對(duì)分和兩種情況討論,即可得答案.【詳解】(1)根據(jù)題意,,設(shè)直線與曲線相切于點(diǎn).根據(jù)題意,可得,解之得,所以.(2)由(1)可知,則當(dāng)x充分小時(shí),當(dāng)x充分大時(shí),∴至少有一個(gè)零點(diǎn).∵,①若,則,在上單調(diào)遞增,∴有唯一零點(diǎn).②若令,得有兩個(gè)極值點(diǎn),∵,∴,∴.∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.∴極大值為.,又,∴在(0,16)上單調(diào)遞增,∴,∴有唯一零點(diǎn).綜上可知,對(duì)于任意,有且僅有一個(gè)零點(diǎn).本題考查導(dǎo)數(shù)的幾何意義的運(yùn)用、利用導(dǎo)數(shù)證明函數(shù)的零點(diǎn)個(gè)數(shù),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意零點(diǎn)存在定理的運(yùn)用.19.(1);(2)【解析】試題分析:(1)求得的解集,根據(jù)集合相等,列出方程組,即可求解的值;(2)①當(dāng)時(shí),恒成立,②當(dāng)時(shí),轉(zhuǎn)化為,設(shè),求得函數(shù)的最小值,即可求解的取值范圍.試題解析:(1)由,得,因?yàn)椴坏仁降慕饧癁?,所以,故不等式可化為,解得,所以,解?(2)①當(dāng)時(shí),恒成立,所以.②當(dāng)時(shí),可化為,設(shè),則,所以當(dāng)時(shí),,所以.綜上,的取值范圍是.20.(1),;(2),,.【解析】
(1)直接利用同角三角函數(shù)關(guān)系式的變換的應(yīng)用求出結(jié)果.(2)首先把函數(shù)的關(guān)系式變形成正弦型函數(shù),進(jìn)一步利用正弦型函數(shù)的性質(zhì)的應(yīng)用求出結(jié)果.【詳解】(1)由題意得,,(2)由,解得,所以對(duì)稱軸為,.由,解得,所以單調(diào)遞增區(qū)間為.,本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.21.(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 雨雪天氣應(yīng)急預(yù)案15篇
- 寬基指數(shù)創(chuàng)新探索:基于行業(yè)均衡的視角- 2024
- 2025屆甘肅省白銀市會(huì)寧縣會(huì)寧縣第一中學(xué)高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析
- 陜西省漢濱區(qū)2025屆高三下學(xué)期一??荚嚁?shù)學(xué)試題含解析
- 2025屆寧夏青銅峽一中高考仿真卷數(shù)學(xué)試卷含解析
- 2025屆新疆石河子市第二中學(xué)高三第一次調(diào)研測(cè)試英語試卷含解析
- 2025屆甘肅省嘉峪關(guān)市重點(diǎn)中學(xué)高考適應(yīng)性考試英語試卷含解析
- 《飛利浦燈泡培訓(xùn)》課件
- 貴州省都勻第一中學(xué)2025屆高考數(shù)學(xué)倒計(jì)時(shí)模擬卷含解析
- 2025屆山東省濰坊市第一中學(xué)高三下學(xué)期聯(lián)合考試語文試題含解析
- 智慧校園匯報(bào)材料PPT
- 工作人員輪崗交流動(dòng)員會(huì)上的講話
- Q∕GDW 11421-2020 電能表外置斷路器技術(shù)規(guī)范
- 商業(yè)銀行信用風(fēng)險(xiǎn)管理信用風(fēng)險(xiǎn)計(jì)量
- 三年級(jí)9月《安徒生童話》閱讀測(cè)試題及答案
- 連二亞硫酸鈉化學(xué)品安全技術(shù)說明書
- 醫(yī)院環(huán)境衛(wèi)生整治排查表
- (完整版)馬來西亞建筑規(guī)范
- 三年級(jí)安全教案
- 濟(jì)南泉水的故事課件
- SOLO分類評(píng)價(jià)理論及應(yīng)用解析(課堂PPT)
評(píng)論
0/150
提交評(píng)論