版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年山東省臨沂市郯城縣重點名校十校聯(lián)考最后數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,O為原點,點A的坐標為(3,0),點B的坐標為(0,4),⊙D過A、B、O三點,點C為上一點(不與O、A兩點重合),則cosC的值為()A. B. C. D.2.將一把直尺和一塊含30°和60°角的三角板ABC按如圖所示的位置放置,如果∠CDE=40°,那么∠BAF的大小為()A.10° B.15° C.20° D.25°3.如圖,△ABC內(nèi)接于⊙O,BC為直徑,AB=8,AC=6,D是弧AB的中點,CD與AB的交點為E,則CE:DE等于()A.3:1 B.4:1 C.5:2 D.7:24.如圖,是半圓的直徑,點、是半圓的三等分點,弦.現(xiàn)將一飛鏢擲向該圖,則飛鏢落在陰影區(qū)域的概率為()A. B. C. D.5.-5的相反數(shù)是()A.5 B. C. D.6.下列分式中,最簡分式是()A. B. C. D.7.已知x=2﹣3,則代數(shù)式(7+43)x2+(2+3)x+3的值是()A.0 B.3 C.2+3 D.2﹣38.如圖,在平面直角坐標系xOy中,點C,B,E在y軸上,Rt△ABC經(jīng)過變化得到Rt△EDO,若點B的坐標為(0,1),OD=2,則這種變化可以是()A.△ABC繞點C順時針旋轉(zhuǎn)90°,再向下平移5個單位長度B.△ABC繞點C逆時針旋轉(zhuǎn)90°,再向下平移5個單位長度C.△ABC繞點O順時針旋轉(zhuǎn)90°,再向左平移3個單位長度D.△ABC繞點O逆時針旋轉(zhuǎn)90°,再向右平移1個單位長度9.如圖,AB為⊙O直徑,已知為∠DCB=20°,則∠DBA為()A.50° B.20° C.60° D.70°10.已知一元二次方程2x2+2x﹣1=0的兩個根為x1,x2,且x1<x2,下列結(jié)論正確的是()A.x1+x2=1 B.x1?x2=﹣1 C.|x1|<|x2| D.x12+x1=二、填空題(本大題共6個小題,每小題3分,共18分)11.關(guān)于x的一元二次方程x2﹣2x+m﹣1=0有兩個實數(shù)根,則m的取值范圍是_____.12.閱讀下面材料:在數(shù)學課上,老師提出如下問題:小亮的作法如下:老師說:“小亮的作法正確”請回答:小亮的作圖依據(jù)是______.13.如圖,在□ABCD中,AC與BD交于點M,點F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,點E是BC的中點,若點P以1cm/秒的速度從點A出發(fā),沿AD向點F運動;點Q同時以2cm/秒的速度從點C出發(fā),沿CB向點B運動.點P運動到F點時停止運動,點Q也同時停止運動.當點P運動_____秒時,以點P、Q、E、F為頂點的四邊形是平行四邊形.14.在Rt△ABC中,∠C=90°,AB=2,BC=,則sin=_____.15.分解因式:________.16.觀察以下一列數(shù):3,,,,,…則第20個數(shù)是_____.三、解答題(共8題,共72分)17.(8分)根據(jù)圖中給出的信息,解答下列問題:放入一個小球水面升高,,放入一個大球水面升高;如果要使水面上升到50,應(yīng)放入大球、小球各多少個?18.(8分)如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.求證:BC是⊙O的切線;已知AD=3,CD=2,求BC的長.19.(8分)如圖,經(jīng)過點C(0,﹣4)的拋物線()與x軸相交于A(﹣2,0),B兩點.(1)a0,0(填“>”或“<”);(2)若該拋物線關(guān)于直線x=2對稱,求拋物線的函數(shù)表達式;(3)在(2)的條件下,連接AC,E是拋物線上一動點,過點E作AC的平行線交x軸于點F.是否存在這樣的點E,使得以A,C,E,F(xiàn)為頂點所組成的四邊形是平行四邊形?若存在,求出滿足條件的點E的坐標;若不存在,請說明理由.20.(8分)如圖,為了測量山頂鐵塔AE的高,小明在27m高的樓CD底部D測得塔頂A的仰角為45°,在樓頂C測得塔頂A的仰角36°52′.已知山高BE為56m,樓的底部D與山腳在同一水平線上,求該鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)21.(8分)為了保證端午龍舟賽在我市漢江水域順利舉辦,某部門工作人員乘快艇到漢江水域考察水情,以每秒10米的速度沿平行于岸邊的賽道AB由西向東行駛.在A處測得岸邊一建筑物P在北偏東30°方向上,繼續(xù)行駛40秒到達B處時,測得建筑物P在北偏西60°方向上,如圖所示,求建筑物P到賽道AB的距離(結(jié)果保留根號).22.(10分)如圖,海中有一個小島A,該島四周11海里范圍內(nèi)有暗礁.有一貨輪在海面上由西向正東方向航行,到達B處時它在小島南偏西60°的方向上,再往正東方向行駛10海里后恰好到達小島南偏西45°方向上的點C處.問:如果貨輪繼續(xù)向正東方向航行,是否會有觸礁的危險?(參考數(shù)據(jù):≈1.41,≈1.73)23.(12分)在“雙十二”期間,兩個超市開展促銷活動,活動方式如下:超市:購物金額打9折后,若超過2000元再優(yōu)惠300元;超市:購物金額打8折.某學校計劃購買某品牌的籃球做獎品,該品牌的籃球在兩個超市的標價相同,根據(jù)商場的活動方式:(1)若一次性付款4200元購買這種籃球,則在商場購買的數(shù)量比在商場購買的數(shù)量多5個,請求出這種籃球的標價;(2)學校計劃購買100個籃球,請你設(shè)計一個購買方案,使所需的費用最少.(直接寫出方案)24.-()-1+3tan60°
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
如圖,連接AB,由圓周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故選D.2、A【解析】
先根據(jù)∠CDE=40°,得出∠CED=50°,再根據(jù)DE∥AF,即可得到∠CAF=50°,最后根據(jù)∠BAC=60°,即可得出∠BAF的大?。驹斀狻坑蓤D可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°?50°=10°,故選A.【點睛】本題考查了平行線的性質(zhì),熟練掌握這一點是解題的關(guān)鍵.3、A【解析】
利用垂徑定理的推論得出DO⊥AB,AF=BF,進而得出DF的長和△DEF∽△CEA,再利用相似三角形的性質(zhì)求出即可.【詳解】連接DO,交AB于點F,∵D是的中點,∴DO⊥AB,AF=BF,∵AB=8,∴AF=BF=4,∴FO是△ABC的中位線,AC∥DO,∵BC為直徑,AB=8,AC=6,∴BC=10,F(xiàn)O=AC=1,∴DO=5,∴DF=5-1=2,∵AC∥DO,∴△DEF∽△CEA,∴,∴==1.故選:A.【點睛】此題主要考查了垂徑定理的推論以及相似三角形的判定與性質(zhì),根據(jù)已知得出△DEF∽△CEA是解題關(guān)鍵.4、D【解析】
連接OC、OD、BD,根據(jù)點C,D是半圓O的三等分點,推導出OC∥BD且△BOD是等邊三角形,陰影部分面積轉(zhuǎn)化為扇形BOD的面積,分別計算出扇形BOD的面積和半圓的面積,然后根據(jù)概率公式即可得出答案.【詳解】解:如圖,連接OC、OD、BD,∵點C、D是半圓O的三等分點,∴,∴∠AOC=∠COD=∠DOB=60°,∵OC=OD,∴△COD是等邊三角形,∴OC=OD=CD,∵,∴,∵OB=OD,∴△BOD是等邊三角形,則∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴,∴S陰影=S扇形OBD,S半圓O,飛鏢落在陰影區(qū)域的概率,故選:D.【點睛】本題主要考查扇形面積的計算和幾何概率問題:概率=相應(yīng)的面積與總面積之比,解題的關(guān)鍵是把求不規(guī)則圖形的面積轉(zhuǎn)化為求規(guī)則圖形的面積.5、A【解析】由相反數(shù)的定義:“只有符號不同的兩個數(shù)互為相反數(shù)”可知-5的相反數(shù)是5.故選A.6、A【解析】試題分析:選項A為最簡分式;選項B化簡可得原式==;選項C化簡可得原式==;選項D化簡可得原式==,故答案選A.考點:最簡分式.7、C【解析】
把x的值代入代數(shù)式,運用完全平方公式和平方差公式計算即可【詳解】解:當x=2﹣3時,(7+43)x2+(2+3)x+3=(7+43)(2﹣3)2+(2+3)(2﹣3)+3=(7+43)(7-43)+1+3=49-48+1+3=2+3故選:C.【點睛】此題考查二次根式的化簡求值,關(guān)鍵是代入后利用完全平方公式和平方差公式進行計算.8、C【解析】
Rt△ABC通過變換得到Rt△ODE,應(yīng)先旋轉(zhuǎn)然后平移即可【詳解】∵Rt△ABC經(jīng)過變化得到Rt△EDO,點B的坐標為(0,1),OD=2,∴DO=BC=2,CO=3,∴將△ABC繞點C順時針旋轉(zhuǎn)90°,再向下平移3個單位長度,即可得到△DOE;或?qū)ⅰ鰽BC繞點O順時針旋轉(zhuǎn)90°,再向左平移3個單位長度,即可得到△DOE;故選:C.【點睛】本題考查的是坐標與圖形變化旋轉(zhuǎn)和平移的知識,解題的關(guān)鍵在于利用旋轉(zhuǎn)和平移的概念和性質(zhì)求坐標的變化9、D【解析】題解析:∵AB為⊙O直徑,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故選D.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.10、D【解析】【分析】直接利用根與系數(shù)的關(guān)系對A、B進行判斷;由于x1+x2<0,x1x2<0,則利用有理數(shù)的性質(zhì)得到x1、x2異號,且負數(shù)的絕對值大,則可對C進行判斷;利用一元二次方程解的定義對D進行判斷.【詳解】根據(jù)題意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B選項錯誤;∵x1+x2<0,x1x2<0,∴x1、x2異號,且負數(shù)的絕對值大,故C選項錯誤;∵x1為一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=,故D選項正確,故選D.【點睛】本題考查了一元二次方程的解、一元二次方程根與系數(shù)的關(guān)系,熟練掌握相關(guān)內(nèi)容是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、m≤1【解析】
根據(jù)一元二次方程有實數(shù)根,得出△≥0,建立關(guān)于m的不等式,求出m的取值范圍即可.【詳解】解:由題意知,△=4﹣4(m﹣1)≥0,∴m≤1,故答案為:m≤1.【點睛】此題考查了根的判別式,掌握一元二次方程根的情況與判別式△的關(guān)系:△>0,方程有兩個不相等的實數(shù)根;△=0,方程有兩個相等的實數(shù)根;△<0,方程沒有實數(shù)根是本題的關(guān)鍵.12、兩點確定一條直線;同圓或等圓中半徑相等【解析】
根據(jù)尺規(guī)作圖的方法,兩點之間確定一條直線的原理即可解題.【詳解】解:∵兩點之間確定一條直線,CD和AB都是圓的半徑,∴AB=CD,依據(jù)是兩點確定一條直線;同圓或等圓中半徑相等.【點睛】本題考查了尺規(guī)作圖:一條線段等于已知線段,屬于簡單題,熟悉尺規(guī)作圖方法是解題關(guān)鍵.13、3或1【解析】
由四邊形ABCD是平行四邊形得出:AD∥BC,AD=BC,∠ADB=∠CBD,又由∠FBM=∠CBM,即可證得FB=FD,求出AD的長,得出CE的長,設(shè)當點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據(jù)題意列出方程并解方程即可得出結(jié)果.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵∠FBM=∠CBM,∴∠FBD=∠FDB,∴FB=FD=12cm,∵AF=6cm,∴AD=18cm,∵點E是BC的中點,∴CE=BC=AD=9cm,要使點P、Q、E、F為頂點的四邊形是平行四邊形,則PF=EQ即可,設(shè)當點P運動t秒時,點P、Q、E、F為頂點的四邊形是平行四邊形,根據(jù)題意得:6-t=9-2t或6-t=2t-9,解得:t=3或t=1.故答案為3或1.【點睛】本題考查了平行四邊形的判定與性質(zhì)、等腰三角形的判定與性質(zhì)以及一元一次方程的應(yīng)用等知識.注意掌握分類討論思想的應(yīng)用是解此題的關(guān)鍵.14、【解析】
根據(jù)∠A的正弦求出∠A=60°,再根據(jù)30°的正弦值求解即可.【詳解】解:∵,∴∠A=60°,∴.故答案為.【點睛】本題考查了特殊角的三角函數(shù)值,熟記30°、45°、60°角的三角函數(shù)值是解題的關(guān)鍵.15、(a+1)(a-1)【解析】
根據(jù)平方差公式分解即可.【詳解】(a+1)(a-1).故答案為:(a+1)(a-1).【點睛】本題考查了因式分解,把一個多項式化成幾個整式的乘積的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分組分解法.因式分解必須分解到每個因式都不能再分解為止.16、【解析】
觀察已知數(shù)列得到一般性規(guī)律,寫出第20個數(shù)即可.【詳解】解:觀察數(shù)列得:第n個數(shù)為,則第20個數(shù)是.故答案為.【點睛】本題考查了規(guī)律型:數(shù)字的變化類,弄清題中的規(guī)律是解答本題的關(guān)鍵.三、解答題(共8題,共72分)17、詳見解析【解析】
(1)設(shè)一個小球使水面升高x厘米,一個大球使水面升高y厘米,根據(jù)圖象提供的數(shù)據(jù)建立方程求解即可.(1)設(shè)應(yīng)放入大球m個,小球n個,根據(jù)題意列二元一次方程組求解即可.【詳解】解:(1)設(shè)一個小球使水面升高x厘米,由圖意,得2x=21﹣16,解得x=1.設(shè)一個大球使水面升高y厘米,由圖意,得1y=21﹣16,解得:y=2.所以,放入一個小球水面升高1cm,放入一個大球水面升高2cm.(1)設(shè)應(yīng)放入大球m個,小球n個,由題意,得,解得:.答:如果要使水面上升到50cm,應(yīng)放入大球4個,小球6個.18、(1)證明見解析(2)BC=【解析】
(1)AB是⊙O的直徑,得∠ADB=90°,從而得出∠BAD=∠DBC,即∠ABC=90°,即可證明BC是⊙O的切線;(2)可證明△ABC∽△BDC,則,即可得出BC=.【詳解】(1)∵AB是⊙O的切直徑,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切線;(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴,即BC2=AC?CD=(AD+CD)?CD=10,∴BC=.考點:1.切線的判定;2.相似三角形的判定和性質(zhì).19、(1)>,>;(2);(3)E(4,﹣4)或(,4)或(,4).【解析】
(1)由拋物線開口向上,且與x軸有兩個交點,即可做出判斷;(2)根據(jù)拋物線的對稱軸及A的坐標,確定出B的坐標,將A,B,C三點坐標代入求出a,b,c的值,即可確定出拋物線解析式;(3)存在,分兩種情況討論:(i)假設(shè)存在點E使得以A,C,E,F(xiàn)為頂點所組成的四邊形是平行四邊形,過點C作CE∥x軸,交拋物線于點E,過點E作EF∥AC,交x軸于點F,如圖1所示;(ii)假設(shè)在拋物線上還存在點E′,使得以A,C,F(xiàn)′,E′為頂點所組成的四邊形是平行四邊形,過點E′作E′F′∥AC交x軸于點F′,則四邊形ACF′E′即為滿足條件的平行四邊形,可得AC=E′F′,AC∥E′F′,如圖2,過點E′作E′G⊥x軸于點G,分別求出E坐標即可.【詳解】(1)a>0,>0;(2)∵直線x=2是對稱軸,A(﹣2,0),∴B(6,0),∵點C(0,﹣4),將A,B,C的坐標分別代入,解得:,,,∴拋物線的函數(shù)表達式為;(3)存在,理由為:(i)假設(shè)存在點E使得以A,C,E,F(xiàn)為頂點所組成的四邊形是平行四邊形,過點C作CE∥x軸,交拋物線于點E,過點E作EF∥AC,交x軸于點F,如圖1所示,則四邊形ACEF即為滿足條件的平行四邊形,∵拋物線關(guān)于直線x=2對稱,∴由拋物線的對稱性可知,E點的橫坐標為4,又∵OC=4,∴E的縱坐標為﹣4,∴存在點E(4,﹣4);(ii)假設(shè)在拋物線上還存在點E′,使得以A,C,F(xiàn)′,E′為頂點所組成的四邊形是平行四邊形,過點E′作E′F′∥AC交x軸于點F′,則四邊形ACF′E′即為滿足條件的平行四邊形,∴AC=E′F′,AC∥E′F′,如圖2,過點E′作E′G⊥x軸于點G,∵AC∥E′F′,∴∠CAO=∠E′F′G,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO≌△E′F′G,∴E′G=CO=4,∴點E′的縱坐標是4,∴,解得:,,∴點E′的坐標為(,4),同理可得點E″的坐標為(,4).20、52【解析】
根據(jù)樓高和山高可求出EF,繼而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根據(jù)CF=BD可建立方程,解出即可.【詳解】如圖,過點C作CF⊥AB于點F.設(shè)塔高AE=x,由題意得,EF=BE?CD=56?27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,則,在Rt△ABD中,∠ADB=45°,AB=x+56,則BD=AB=x+56,∵CF=BD,∴,解得:x=52,答:該鐵塔的高AE為52米.【點睛】本題考查了解直角三角形的應(yīng)用,解答本題的關(guān)鍵是構(gòu)造直角三角形,注意利用方程思想求解,難度一般.21、100米.【解析】【分析】如圖,作PC⊥AB于C,構(gòu)造出Rt△PAC與Rt△PBC,求出AB的長度,利用特殊角的三角函數(shù)值進行求解即可得.【詳解】如圖,過P點作PC⊥AB于C,由題意可知:∠PAC=60°,∠PBC=30°,在Rt△PAC中,tan∠PAC=,∴AC=PC,在Rt△PBC中,tan∠PBC=,∴BC=PC,∵AB=AC+BC=PC+PC=10×40=400,∴PC=100,答:建筑物P到賽道AB的距離為100米.【點睛】本題考查了解直角三角形的應(yīng)用,正確添加輔助線構(gòu)造直角三角形,利用特殊角的三角函數(shù)值進行解答是關(guān)鍵.22、不會有觸礁的危險,理由見解析.【解析】分析:作AH⊥BC,由∠CAH=45°,可設(shè)AH=CH=x,根據(jù)可得關(guān)于x的方程,解之可得.詳解:過點A作AH⊥BC,垂足為點H.由題意,得∠BAH=60°,∠CAH=45°,BC=1.設(shè)AH=x,則CH=x.在Rt△ABH中,∵,解得:.∵13.65>11,∴貨輪繼續(xù)向正東方向航行
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度杉木木材進口合同范本6篇
- 衛(wèi)星導航定位精度提升-第2篇-洞察分析
- 2023年項目部安全培訓考試題附參考答案(典型題)
- 2023年項目管理人員安全培訓考試題及答案往年題考
- 語音變異現(xiàn)象探究-洞察分析
- 設(shè)計質(zhì)量保證措施
- 請款申請范文
- 物理試驗員崗位職責
- 提高家長滿意度專項實施工作計劃
- 商品房買賣合同范文
- 2024年民航安全知識培訓考試題庫及答案(核心題)
- MOOC 漢字文化解密-華中師范大學 中國大學慕課答案
- 黑龍江省哈爾濱市香坊區(qū)2023-2024學年八年級上學期期末語文試卷
- 青島版(五四制)四年級數(shù)學下冊全冊課件
- 農(nóng)村污水處理設(shè)施運維方案特別維護應(yīng)急處理預案
- 【施工組織方案】框架結(jié)構(gòu)施工組織設(shè)計
- 工業(yè)控制系統(tǒng)安全與實踐 課件 第7-9章 工業(yè)控制系統(tǒng)異常行為檢測、工控系統(tǒng)信息安全風險評估、入侵響應(yīng)
- 人工智能背景下高校智慧思政建設(shè)
- 高考物理復習講義第88講 電磁感應(yīng)中的雙桿模型(解析版)
- 老年人的心肺復蘇課件
- 6.2密度說課課件(23)2022-2023學年人教版物理八年級上冊
評論
0/150
提交評論