版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是橢圓和雙曲線的公共焦點(diǎn),是它們的-一個(gè)公共點(diǎn),且,設(shè)橢圓和雙曲線的離心率分別為,則的關(guān)系為()A. B.C. D.2.執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為3,則可輸入的實(shí)數(shù)值的個(gè)數(shù)為()A.1 B.2 C.3 D.43.已知雙曲線的左、右焦點(diǎn)分別為,過作一條直線與雙曲線右支交于兩點(diǎn),坐標(biāo)原點(diǎn)為,若,則該雙曲線的離心率為()A. B. C. D.4.已知橢圓的短軸長為2,焦距為分別是橢圓的左、右焦點(diǎn),若點(diǎn)為上的任意一點(diǎn),則的取值范圍為()A. B. C. D.5.下列函數(shù)中,值域?yàn)榈呐己瘮?shù)是()A. B. C. D.6.如圖,四面體中,面和面都是等腰直角三角形,,,且二面角的大小為,若四面體的頂點(diǎn)都在球上,則球的表面積為()A. B. C. D.7.設(shè)雙曲線(a>0,b>0)的一個(gè)焦點(diǎn)為F(c,0)(c>0),且離心率等于,若該雙曲線的一條漸近線被圓x2+y2﹣2cx=0截得的弦長為2,則該雙曲線的標(biāo)準(zhǔn)方程為()A. B.C. D.8.若為虛數(shù)單位,則復(fù)數(shù),則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.函數(shù)(或)的圖象大致是()A. B. C. D.10.一個(gè)由兩個(gè)圓柱組合而成的密閉容器內(nèi)裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時(shí),液面以上空余部分的高為,如圖2放置容器時(shí),液面以上空余部分的高為,則()A. B. C. D.11.已知雙曲線的實(shí)軸長為,離心率為,、分別為雙曲線的左、右焦點(diǎn),點(diǎn)在雙曲線上運(yùn)動(dòng),若為銳角三角形,則的取值范圍是()A. B. C. D.12.已知集合,,若,則實(shí)數(shù)的值可以為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)與的圖象上存在關(guān)于軸對(duì)稱的點(diǎn),則的取值范圍為_____.14.函數(shù)與的圖象上存在關(guān)于軸的對(duì)稱點(diǎn),則實(shí)數(shù)的取值范圍為______.15.若方程有兩個(gè)不等實(shí)根,則實(shí)數(shù)的取值范圍是_____________.16.已知四棱錐,底面四邊形為正方形,,四棱錐的體積為,在該四棱錐內(nèi)放置一球,則球體積的最大值為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)這次新冠肺炎疫情,是新中國成立以來在我國發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經(jīng)歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長,從磨難中奮起.在這次疫情中,全國人民展現(xiàn)出既有責(zé)任擔(dān)當(dāng)之勇、又有科學(xué)防控之智.某校高三學(xué)生也展開了對(duì)這次疫情的研究,一名同學(xué)在數(shù)據(jù)統(tǒng)計(jì)中發(fā)現(xiàn),從2020年2月1日至2月7日期間,日期和全國累計(jì)報(bào)告確診病例數(shù)量(單位:萬人)之間的關(guān)系如下表:日期1234567全國累計(jì)報(bào)告確診病例數(shù)量(萬人)1.41.72.02.42.83.13.5(1)根據(jù)表中的數(shù)據(jù),運(yùn)用相關(guān)系數(shù)進(jìn)行分析說明,是否可以用線性回歸模型擬合與的關(guān)系?(2)求出關(guān)于的線性回歸方程(系數(shù)精確到0.01).并預(yù)測(cè)2月10日全國累計(jì)報(bào)告確診病例數(shù).參考數(shù)據(jù):,,,.參考公式:相關(guān)系數(shù)回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.18.(12分)己知,,.(1)求證:;(2)若,求證:.19.(12分)在中,內(nèi)角的對(duì)邊分別是,已知.(1)求角的值;(2)若,,求的面積.20.(12分)已知函數(shù),.(1)證明:函數(shù)的極小值點(diǎn)為1;(2)若函數(shù)在有兩個(gè)零點(diǎn),證明:.21.(12分)選修4-2:矩陣與變換(本小題滿分10分)已知矩陣A=(k≠0)的一個(gè)特征向量為α=,A的逆矩陣A-1對(duì)應(yīng)的變換將點(diǎn)(3,1)變?yōu)辄c(diǎn)(1,1).求實(shí)數(shù)a,k的值.22.(10分)已知,函數(shù).(Ⅰ)若在區(qū)間上單調(diào)遞增,求的值;(Ⅱ)若恒成立,求的最大值.(參考數(shù)據(jù):)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
設(shè)橢圓的半長軸長為,雙曲線的半長軸長為,根據(jù)橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡(jiǎn)求解.【詳解】設(shè)橢圓的長半軸長為,雙曲線的長半軸長為,由橢圓和雙曲線的定義得:,解得,設(shè),在中,由余弦定理得:,化簡(jiǎn)得,即.故選:A【點(diǎn)睛】本題主要考查橢圓,雙曲線的定義和性質(zhì)以及余弦定理的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.2.C【解析】試題分析:根據(jù)題意,當(dāng)時(shí),令,得;當(dāng)時(shí),令,得,故輸入的實(shí)數(shù)值的個(gè)數(shù)為1.考點(diǎn):程序框圖.3.B【解析】
由題可知,,再結(jié)合雙曲線第一定義,可得,對(duì)有,即,解得,再對(duì),由勾股定理可得,化簡(jiǎn)即可求解【詳解】如圖,因?yàn)椋?因?yàn)樗?在中,,即,得,則.在中,由得.故選:B【點(diǎn)睛】本題考查雙曲線的離心率求法,幾何性質(zhì)的應(yīng)用,屬于中檔題4.D【解析】
先求出橢圓方程,再利用橢圓的定義得到,利用二次函數(shù)的性質(zhì)可求,從而可得的取值范圍.【詳解】由題設(shè)有,故,故橢圓,因?yàn)辄c(diǎn)為上的任意一點(diǎn),故.又,因?yàn)?,故,所?故選:D.【點(diǎn)睛】本題考查橢圓的幾何性質(zhì),一般地,如果橢圓的左、右焦點(diǎn)分別是,點(diǎn)為上的任意一點(diǎn),則有,我們常用這個(gè)性質(zhì)來考慮與焦點(diǎn)三角形有關(guān)的問題,本題屬于基礎(chǔ)題.5.C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點(diǎn):1、函數(shù)的奇偶性;2、函數(shù)的值域.6.B【解析】
分別取、的中點(diǎn)、,連接、、,利用二面角的定義轉(zhuǎn)化二面角的平面角為,然后分別過點(diǎn)作平面的垂線與過點(diǎn)作平面的垂線交于點(diǎn),在中計(jì)算出,再利用勾股定理計(jì)算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案.【詳解】如下圖所示,分別取、的中點(diǎn)、,連接、、,由于是以為直角等腰直角三角形,為的中點(diǎn),,,且、分別為、的中點(diǎn),所以,,所以,,所以二面角的平面角為,,則,且,所以,,,是以為直角的等腰直角三角形,所以,的外心為點(diǎn),同理可知,的外心為點(diǎn),分別過點(diǎn)作平面的垂線與過點(diǎn)作平面的垂線交于點(diǎn),則點(diǎn)在平面內(nèi),如下圖所示,由圖形可知,,在中,,,所以,,所以,球的半徑為,因此,球的表面積為.故選:B.【點(diǎn)睛】本題考查球體的表面積,考查二面角的定義,解決本題的關(guān)鍵在于找出球心的位置,同時(shí)考查了計(jì)算能力,屬于中等題.7.C【解析】
由題得,,又,聯(lián)立解方程組即可得,,進(jìn)而得出雙曲線方程.【詳解】由題得①又該雙曲線的一條漸近線方程為,且被圓x2+y2﹣2cx=0截得的弦長為2,所以②又③由①②③可得:,,所以雙曲線的標(biāo)準(zhǔn)方程為.故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì),圓的方程的有關(guān)計(jì)算,考查了學(xué)生的計(jì)算能力.8.B【解析】
首先根據(jù)特殊角的三角函數(shù)值將復(fù)數(shù)化為,求出,再利用復(fù)數(shù)的幾何意義即可求解.【詳解】,,則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為,位于第二象限.故選:B【點(diǎn)睛】本題考查了復(fù)數(shù)的幾何意義、共軛復(fù)數(shù)的概念、特殊角的三角函數(shù)值,屬于基礎(chǔ)題.9.A【解析】
確定函數(shù)的奇偶性,排除兩個(gè)選項(xiàng),再求時(shí)的函數(shù)值,再排除一個(gè),得正確選項(xiàng).【詳解】分析知,函數(shù)(或)為偶函數(shù),所以圖象關(guān)于軸對(duì)稱,排除B,C,當(dāng)時(shí),,排除D,故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,解題時(shí)可通過研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對(duì)稱性等,研究特殊的函數(shù)的值、函數(shù)值的正負(fù),以及函數(shù)值的變化趨勢(shì),排除錯(cuò)誤選項(xiàng),得正確結(jié)論.10.B【解析】
根據(jù)空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因?yàn)?,所?故選:B【點(diǎn)睛】本題考查圓柱的體積,屬于基礎(chǔ)題.11.A【解析】
由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結(jié)合即可解決.【詳解】由已知可得,,所以,從而雙曲線方程為,不妨設(shè)點(diǎn)在雙曲線右支上運(yùn)動(dòng),則,當(dāng)時(shí),此時(shí),所以,,所以;當(dāng)軸時(shí),,所以,又為銳角三角形,所以.故選:A.【點(diǎn)睛】本題考查雙曲線的性質(zhì)及其應(yīng)用,本題的關(guān)鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.12.D【解析】
由題意可得,根據(jù),即可得出,從而求出結(jié)果.【詳解】,且,,∴的值可以為.故選:D.【點(diǎn)睛】考查描述法表示集合的定義,以及并集的定義及運(yùn)算.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
兩函數(shù)圖象上存在關(guān)于軸對(duì)稱的點(diǎn)的等價(jià)命題是方程在區(qū)間上有解,化簡(jiǎn)方程在區(qū)間上有解,構(gòu)造函數(shù),求導(dǎo),求出單調(diào)區(qū)間,利用函數(shù)性質(zhì)得解.【詳解】解:根據(jù)題意,若函數(shù)與的圖象上存在關(guān)于軸對(duì)稱的點(diǎn),則方程在區(qū)間上有解,即方程在區(qū)間上有解,設(shè)函數(shù),其導(dǎo)數(shù),又由,可得:當(dāng)時(shí),為減函數(shù),當(dāng)時(shí),為增函數(shù),故函數(shù)有最小值,又由;比較可得:,故函數(shù)有最大值,故函數(shù)在區(qū)間上的值域?yàn)?;若方程在區(qū)間上有解,必有,則有,即的取值范圍是;故答案為:;【點(diǎn)睛】本題利用導(dǎo)數(shù)研究函數(shù)在某區(qū)間上最值求參數(shù)的問題,函數(shù)零點(diǎn)問題的拓展.由于函數(shù)的零點(diǎn)就是方程的根,在研究方程的有關(guān)問題時(shí),可以將方程問題轉(zhuǎn)化為函數(shù)問題解決.此類問題的切入點(diǎn)是借助函數(shù)的零點(diǎn),結(jié)合函數(shù)的圖象,采用數(shù)形結(jié)合思想加以解決.14.【解析】
先求得與關(guān)于軸對(duì)稱的函數(shù),將問題轉(zhuǎn)化為與的圖象有交點(diǎn),即方程有解.對(duì)分成三種情況進(jìn)行分類討論,由此求得實(shí)數(shù)的取值范圍.【詳解】因?yàn)殛P(guān)于軸對(duì)稱的函數(shù)為,因?yàn)楹瘮?shù)與的圖象上存在關(guān)于軸的對(duì)稱點(diǎn),所以與的圖象有交點(diǎn),方程有解.時(shí)符合題意.時(shí)轉(zhuǎn)化為有解,即,的圖象有交點(diǎn),是過定點(diǎn)的直線,其斜率為,若,則函數(shù)與的圖象必有交點(diǎn),滿足題意;若,設(shè),相切時(shí),切點(diǎn)的坐標(biāo)為,則,解得,切線斜率為,由圖可知,當(dāng),即時(shí),,的圖象有交點(diǎn),此時(shí),與的圖象有交點(diǎn),函數(shù)與的圖象上存在關(guān)于軸的對(duì)稱點(diǎn),綜上可得,實(shí)數(shù)的取值范圍為.故答案為:【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求解函數(shù)的零點(diǎn)以及對(duì)稱性,函數(shù)與方程等基礎(chǔ)知識(shí),考查學(xué)生分析問題,解決問題的能力,推理與運(yùn)算求解能力,轉(zhuǎn)化與化歸思想和應(yīng)用意識(shí).15.【解析】
由知x>0,故.令,則.當(dāng)時(shí),;當(dāng)時(shí),.所以在(0,e)上遞增,在(e,+)上遞減.故,即.16.【解析】
由題知,該四棱錐為正四棱錐,作出該正四棱錐的高和斜高,連接,則球心O必在的邊上,設(shè),由球與四棱錐的內(nèi)切關(guān)系可知,設(shè),用和表示四棱錐的體積,解得和的關(guān)系,進(jìn)而表示出內(nèi)切球的半徑,并求出半徑的最大值,進(jìn)而求出球的體積的最大值.【詳解】設(shè),,由球O內(nèi)切于四棱錐可知,,,則,球O的半徑,,,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,此時(shí).故答案為:.【點(diǎn)睛】本題考查了棱錐的體積問題,內(nèi)切球問題,考查空間想象能力,屬于較難的填空壓軸題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)可以用線性回歸模型擬合與的關(guān)系;(2),預(yù)測(cè)2月10日全國累計(jì)報(bào)告確診病例數(shù)約有4.5萬人.【解析】
(1)根據(jù)已知數(shù)據(jù),利用公式求得,再根據(jù)的值越大說明它們的線性相關(guān)性越高來判斷.(2)由(1)的相關(guān)數(shù)據(jù),求得,,寫出回歸方程,然后將代入回歸方程求解.【詳解】(1)由已知數(shù)據(jù)得,,,所以,,所以.因?yàn)榕c的相關(guān)近似為0.99,說明它們的線性相關(guān)性相當(dāng)高,從而可以用線性回歸模型擬合與的關(guān)系.(2)由(1)得,,,所以,關(guān)于的回歸方程為:,2月10日,即代入回歸方程得:.所以預(yù)測(cè)2月10日全國累計(jì)報(bào)告確診病例數(shù)約有4.5萬人.【點(diǎn)睛】本題主要考查線性回歸分析和回歸方程的求解及應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.18.(1)證明見解析(2)證明見解析【解析】
(1)采用分析法論證,要證,分式化整式為,再利用立方和公式轉(zhuǎn)化為,再作差提取公因式論證.(2)由基本不等式得,再用不等式的基本性質(zhì)論證.【詳解】(1)要證,即證,即證,即證,即證,即證,該式顯然成立,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,故.(2)由基本不等式得,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立.將上面四式相加,可得,即.【點(diǎn)睛】本題考查證明不等式的方法、基本不等式,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題..19.(1);(2)【解析】
(1)由已知條件和正弦定理進(jìn)行邊角互化得,再根據(jù)余弦定理可求得值.(2)由正弦定理得,,代入得,運(yùn)用三角形的面積公式可求得其值.【詳解】(1)由及正弦定理得,即由余弦定理得,,.(2)設(shè)外接圓的半徑為,則由正弦定理得,,,.【點(diǎn)睛】本題考查運(yùn)用三角形的正弦定理、余弦定理、三角形的面積公式,關(guān)鍵在于熟練地運(yùn)用其公式,合理地選擇進(jìn)行邊角互化,屬于基礎(chǔ)題.20.(1)見解析(2)見解析【解析】
(1)利用導(dǎo)函數(shù)的正負(fù)確定函數(shù)的增減.(2)函數(shù)在有兩個(gè)零點(diǎn),即方程在區(qū)間有兩解,令通過二次求導(dǎo)確定函數(shù)單調(diào)性證明參數(shù)范圍.【詳解】解:(1)證明:因?yàn)?,?dāng)時(shí),,,所以在區(qū)間遞減;當(dāng)時(shí),,所以,所以在區(qū)間遞增;且,所以函數(shù)的極小值點(diǎn)為1(2)函數(shù)在有兩個(gè)零點(diǎn),即方程在區(qū)間有兩解,令,則令,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度深圳青年人才租房補(bǔ)貼合同范本
- 2025年度教育機(jī)構(gòu)試用期教師合同協(xié)議書
- 二零二五年度公益組織員工薪酬合同模板版
- 2025年度股權(quán)抵押證券化項(xiàng)目合同
- 二零二五年度智能出行消費(fèi)者賠償保障合同
- 2025年度船舶智能化改造與運(yùn)輸服務(wù)合同
- 2025年度高利貸借款標(biāo)準(zhǔn)合同模板(二零二五年度定制)
- 2025年度飯店轉(zhuǎn)讓與地方特色餐飲品牌合作合同
- 培訓(xùn)開班主持
- 高磷血癥診療理論考核試題
- 2025年工程合作協(xié)議書
- 2025年山東省東營市東營區(qū)融媒體中心招聘全媒體采編播專業(yè)技術(shù)人員10人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 出院健康宣教課件
- 電袋復(fù)合除塵器工藝說明
- 六年級(jí)下冊(cè)第四單元語文園地-語文園地四-學(xué)習(xí)任務(wù)單
- 《新聞采訪寫作》課程思政優(yōu)秀教學(xué)案例(一等獎(jiǎng))
- 竣工驗(yàn)收程序流程圖
- 清華經(jīng)管工商管理碩士研究生培養(yǎng)計(jì)劃
- 口腔科診斷證明書模板
- 管溝挖槽土方計(jì)算公式
- 國網(wǎng)浙江省電力公司住宅工程配電設(shè)計(jì)技術(shù)規(guī)定
評(píng)論
0/150
提交評(píng)論