版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列函數(shù)中,值域為的偶函數(shù)是()A. B. C. D.2.我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果,哥德巴赫猜想的內(nèi)容是:每個大于2的偶數(shù)都可以表示為兩個素數(shù)的和,例如:,,,那么在不超過18的素數(shù)中隨機(jī)選取兩個不同的數(shù),其和等于16的概率為()A. B. C. D.3.已知復(fù)數(shù)滿足,則的共軛復(fù)數(shù)是()A. B. C. D.4.函數(shù)的圖象可能為()A. B.C. D.5.設(shè)為定義在上的奇函數(shù),當(dāng)時,(為常數(shù)),則不等式的解集為()A. B. C. D.6.在三棱錐中,,,P在底面ABC內(nèi)的射影D位于直線AC上,且,.設(shè)三棱錐的每個頂點都在球Q的球面上,則球Q的半徑為()A. B. C. D.7.在菱形中,,,,分別為,的中點,則()A. B. C.5 D.8.已知集合,,,則集合()A. B. C. D.9.如圖所示,網(wǎng)絡(luò)紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.810.已知函數(shù)若關(guān)于的方程有六個不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.11.已知向量,,且與的夾角為,則x=()A.-2 B.2 C.1 D.-112.過雙曲線的左焦點作傾斜角為的直線,若與軸的交點坐標(biāo)為,則該雙曲線的標(biāo)準(zhǔn)方程可能為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在《九章算術(shù)》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬.如圖,若四棱錐為陽馬,側(cè)棱底面,且,,設(shè)該陽馬的外接球半徑為,內(nèi)切球半徑為,則__________.14.如果函數(shù)(,且,)在區(qū)間上單調(diào)遞減,那么的最大值為__________.15.為激發(fā)學(xué)生團(tuán)結(jié)協(xié)作,敢于拼搏,不言放棄的精神,某校高三5個班進(jìn)行班級間的拔河比賽.每兩班之間只比賽1場,目前(—)班已賽了4場,(二)班已賽了3場,(三)班已賽了2場,(四)班已賽了1場.則目前(五)班已經(jīng)參加比賽的場次為__________.16.現(xiàn)有一塊邊長為a的正方形鐵片,鐵片的四角截去四個邊長均為x的小正方形,然后做成一個無蓋方盒,該方盒容積的最大值是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),,使得對任意兩個不等的正實數(shù),都有恒成立.(1)求的解析式;(2)若方程有兩個實根,且,求證:.18.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實數(shù),使得,證明:.19.(12分)已知動圓E與圓外切,并與直線相切,記動圓圓心E的軌跡為曲線C.(1)求曲線C的方程;(2)過點的直線l交曲線C于A,B兩點,若曲線C上存在點P使得,求直線l的斜率k的取值范圍.20.(12分)在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點.以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;(Ⅱ)設(shè)直線與曲線C交于P,Q兩點,求的值.21.(12分)選修4-4:坐標(biāo)系與參數(shù)方程已知曲線的參數(shù)方程是(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.(1)寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;(2)已知點、的極坐標(biāo)分別為和,直線與曲線相交于,兩點,射線與曲線相交于點,射線與曲線相交于點,求的值.22.(10分)如圖,四邊形為菱形,為與的交點,平面.(1)證明:平面平面;(2)若,,三棱錐的體積為,求菱形的邊長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點:1、函數(shù)的奇偶性;2、函數(shù)的值域.2.B【解析】
先求出從不超過18的素數(shù)中隨機(jī)選取兩個不同的數(shù)的所有可能結(jié)果,然后再求出其和等于16的結(jié)果,根據(jù)等可能事件的概率公式可求.【詳解】解:不超過18的素數(shù)有2,3,5,7,11,13,17共7個,從中隨機(jī)選取兩個不同的數(shù)共有,其和等于16的結(jié)果,共2種等可能的結(jié)果,故概率.故選:B.【點睛】古典概型要求能夠列舉出所有事件和發(fā)生事件的個數(shù),本題不可以列舉出所有事件但可以用分步計數(shù)得到,屬于基礎(chǔ)題.3.B【解析】
根據(jù)復(fù)數(shù)的除法運(yùn)算法則和共軛復(fù)數(shù)的定義直接求解即可.【詳解】由,得,所以.故選:B【點睛】本題考查了復(fù)數(shù)的除法的運(yùn)算法則,考查了復(fù)數(shù)的共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.4.C【解析】
先根據(jù)是奇函數(shù),排除A,B,再取特殊值驗證求解.【詳解】因為,所以是奇函數(shù),故排除A,B,又,故選:C【點睛】本題主要考查函數(shù)的圖象,還考查了理解辨析的能力,屬于基礎(chǔ)題.5.D【解析】
由可得,所以,由為定義在上的奇函數(shù)結(jié)合增函數(shù)+增函數(shù)=增函數(shù),可知在上單調(diào)遞增,注意到,再利用函數(shù)單調(diào)性即可解決.【詳解】因為在上是奇函數(shù).所以,解得,所以當(dāng)時,,且時,單調(diào)遞增,所以在上單調(diào)遞增,因為,故有,解得.故選:D.【點睛】本題考查利用函數(shù)的奇偶性、單調(diào)性解不等式,考查學(xué)生對函數(shù)性質(zhì)的靈活運(yùn)用能力,是一道中檔題.6.A【解析】
設(shè)的中點為O先求出外接圓的半徑,設(shè),利用平面ABC,得,在及中利用勾股定理構(gòu)造方程求得球的半徑即可【詳解】設(shè)的中點為O,因為,所以外接圓的圓心M在BO上.設(shè)此圓的半徑為r.因為,所以,解得.因為,所以.設(shè),易知平面ABC,則.因為,所以,即,解得.所以球Q的半徑.故選:A【點睛】本題考查球的組合體,考查空間想象能力,考查計算求解能力,是中檔題7.B【解析】
據(jù)題意以菱形對角線交點為坐標(biāo)原點建立平面直角坐標(biāo)系,用坐標(biāo)表示出,再根據(jù)坐標(biāo)形式下向量的數(shù)量積運(yùn)算計算出結(jié)果.【詳解】設(shè)與交于點,以為原點,的方向為軸,的方向為軸,建立直角坐標(biāo)系,則,,,,,所以.故選:B.【點睛】本題考查建立平面直角坐標(biāo)系解決向量的數(shù)量積問題,難度一般.長方形、正方形、菱形中的向量數(shù)量積問題,如果直接計算較麻煩可考慮用建系的方法求解.8.D【解析】
根據(jù)集合的混合運(yùn)算,即可容易求得結(jié)果.【詳解】,故可得.故選:D.【點睛】本題考查集合的混合運(yùn)算,屬基礎(chǔ)題.9.A【解析】
先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.10.B【解析】
令,則,由圖象分析可知在上有兩個不同的根,再利用一元二次方程根的分布即可解決.【詳解】令,則,如圖與頂多只有3個不同交點,要使關(guān)于的方程有六個不相等的實數(shù)根,則有兩個不同的根,設(shè)由根的分布可知,,解得.故選:B.【點睛】本題考查復(fù)合方程根的個數(shù)問題,涉及到一元二次方程根的分布,考查學(xué)生轉(zhuǎn)化與化歸和數(shù)形結(jié)合的思想,是一道中檔題.11.B【解析】
由題意,代入解方程即可得解.【詳解】由題意,所以,且,解得.故選:B.【點睛】本題考查了利用向量的數(shù)量積求向量的夾角,屬于基礎(chǔ)題.12.A【解析】
直線的方程為,令,得,得到a,b的關(guān)系,結(jié)合選項求解即可【詳解】直線的方程為,令,得.因為,所以,只有選項滿足條件.故選:A【點睛】本題考查直線與雙曲線的位置關(guān)系以及雙曲線的標(biāo)準(zhǔn)方程,考查運(yùn)算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
該陽馬補(bǔ)形所得到的長方體的對角線為外接球的直徑,由此能求出,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,從而內(nèi)切球半徑為,由此能求出.【詳解】四棱錐為陽馬,側(cè)棱底面,且,,設(shè)該陽馬的外接球半徑為,該陽馬補(bǔ)形所得到的長方體的對角線為外接球的直徑,,,側(cè)棱底面,且底面為正方形,內(nèi)切球在側(cè)面內(nèi)的正視圖是的內(nèi)切圓,內(nèi)切球半徑為,故.故答案為.【點睛】本題考查了幾何體外接球和內(nèi)切球的相關(guān)問題,補(bǔ)形法的運(yùn)用,以及數(shù)學(xué)文化,考查了空間想象能力,是中檔題.解決球與其他幾何體的切、接問題,關(guān)鍵是能夠確定球心位置,以及選擇恰當(dāng)?shù)慕嵌茸龀鼋孛?球心位置的確定的方法有很多,主要有兩種:(1)補(bǔ)形法(構(gòu)造法),通過補(bǔ)形為長方體(正方體),球心位置即為體對角線的中點;(2)外心垂線法,先找出幾何體中不共線三點構(gòu)成的三角形的外心,再找出過外心且與不共線三點確定的平面垂直的垂線,則球心一定在垂線上.14.18【解析】
根據(jù)函數(shù)單調(diào)性的性質(zhì),分一次函數(shù)和一元二次函數(shù)的對稱性和單調(diào)區(qū)間的關(guān)系建立不等式,利用基本不等式求解即可.【詳解】解:①當(dāng)時,,在區(qū)間上單調(diào)遞減,則,即,則.②當(dāng)時,,函數(shù)開口向上,對稱軸為,因為在區(qū)間上單調(diào)遞減,則,因為,則,整理得,又因為,則.所以即,所以當(dāng)且僅當(dāng)時等號成立.綜上所述,的最大值為18.故答案為:18【點睛】本題主要考查一次函數(shù)與二次函數(shù)的單調(diào)性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.15.2【解析】
根據(jù)比賽場次,分析,畫出圖象,計算結(jié)果.【詳解】畫圖所示,可知目前(五)班已經(jīng)賽了2場.故答案為:2【點睛】本題考查推理,計數(shù)原理的圖形表示,意在考查數(shù)形結(jié)合分析問題的能力,屬于基礎(chǔ)題型.16.【解析】
由題意容積,求導(dǎo)研究單調(diào)性,分析即得解.【詳解】由題意:容積,,則,由得或(舍去),令則為V在定義域內(nèi)唯一的極大值點也是最大值點,此時.故答案為:【點睛】本題考查了導(dǎo)數(shù)在實際問題中的應(yīng)用,考查了學(xué)生數(shù)學(xué)建模,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)證明見解析.【解析】
(1)根據(jù)題意,在上單調(diào)遞減,求導(dǎo)得,分類討論的單調(diào)性,結(jié)合題意,得出的解析式;(2)由為方程的兩個實根,得出,,兩式相減,分別算出和,利用換元法令和構(gòu)造函數(shù),根據(jù)導(dǎo)數(shù)研究單調(diào)性,求出,即可證出結(jié)論.【詳解】(1)根據(jù)題意,對任意兩個不等的正實數(shù),都有恒成立.則在上單調(diào)遞減,因為,當(dāng)時,在內(nèi)單調(diào)遞減.,當(dāng)時,由,有,此時,當(dāng)時,單調(diào)遞減,當(dāng)時,單調(diào)遞增,綜上,,所以.(2)由為方程的兩個實根,得,兩式相減,可得,因此,令,由,得,則,構(gòu)造函數(shù).則,所以函數(shù)在上單調(diào)遞增,故,即,可知,故,命題得證.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性求函數(shù)的解析式、以及利用構(gòu)造函數(shù)法證明不等式,考查轉(zhuǎn)化思想、解題分析能力和計算能力.18.(1)當(dāng)時,在上遞增,在上遞減;當(dāng)時,在上遞增,在上遞減,在上遞增;當(dāng)時,在上遞增;當(dāng)時,在上遞增,在上遞減,在上遞增;(2)證明見解析【解析】
(1)對求導(dǎo),分,,進(jìn)行討論,可得的單調(diào)性;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,,設(shè),可得,則,設(shè),對求導(dǎo),利用其單調(diào)性可證明.【詳解】解:的定義域為,因為,所以,當(dāng)時,令,得,令,得;當(dāng)時,則,令,得,或,令,得;當(dāng)時,,當(dāng)時,則,令,得;綜上所述,當(dāng)時,在上遞增,在上遞減;當(dāng)時,在上遞增,在上遞減,在上遞增;當(dāng)時,在上遞增;當(dāng)時,在上遞增,在上遞減,在上遞增;(2)在定義域內(nèi)是是增函數(shù),由(1)可知,此時,設(shè),又因為,則,設(shè),則對于任意成立,所以在上是增函數(shù),所以對于,有,即,有,因為,所以,即,又在遞增,所以,即.【點睛】本題主要考查利用導(dǎo)數(shù)研究含參函數(shù)的單調(diào)性及導(dǎo)數(shù)在極值點偏移中的應(yīng)用,考查學(xué)生分類討論與轉(zhuǎn)化的思想,綜合性大,屬于難題.19.(1);(2).【解析】
(1)根據(jù)拋物線的定義,結(jié)合已知條件,即可容易求得結(jié)果;(2)設(shè)出直線的方程,聯(lián)立拋物線方程,根據(jù)直線與拋物線相交則,結(jié)合由得到的斜率關(guān)系,即可求得斜率的范圍.【詳解】(1)因為動圓與圓外切,并與直線相切,所以點到點的距離比點到直線的距離大.因為圓的半徑為,所以點到點的距離等于點到直線的距離,所以圓心的軌跡為拋物線,且焦點坐標(biāo)為.所以曲線的方程.(2)設(shè),,由得,由得且.,,同理由,得,即,所以,由,得且,又且,所以的取值范圍為.【點睛】本題考查由拋物線定義求拋物線方程,涉及直線與拋物線相交結(jié)合垂直關(guān)系求斜率的范圍,屬綜合中檔題.20.(Ⅰ)(t為參數(shù)),;(Ⅱ)1.【解析】
(Ⅰ)直接由已知寫出直線l1的參數(shù)方程,設(shè)N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),由題意可得,即ρ=4cosθ,然后化為普通方程;(Ⅱ)將l1的參數(shù)方程代入C的直角坐標(biāo)方程中,得到關(guān)于t的一元二次方程,再由參數(shù)t的幾何意義可得|AP|?|AQ|的值.【詳解】(Ⅰ)直線l1的參數(shù)方程為,(t為參數(shù))即(t為參數(shù)).設(shè)N(ρ,θ),M(ρ1,θ1),(ρ>0,ρ1>0),則,即,即ρ=4cosθ,∴曲線C的直角坐標(biāo)方程為x2-4x+y2=0(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025江西省安全員-C證考試(專職安全員)題庫及答案
- 2025陜西省建筑安全員《B證》考試題庫及答案
- 2025浙江省安全員A證考試題庫附答案
- 二十四節(jié)氣之立春課件模板
- 《蛋糕制作》課件
- 工藝管道培訓(xùn)課件
- 《海南海口夏競》課件
- 單位管理制度收錄大合集【人員管理篇】
- 有機(jī)玻璃操作箱行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- 2025年節(jié)油設(shè)備項目評估報告
- 柴油發(fā)電機(jī)組采購施工 投標(biāo)方案(技術(shù)方案)
- 成人氧氣吸入療法-中華護(hù)理學(xué)會團(tuán)體標(biāo)準(zhǔn)
- 股權(quán)招募計劃書
- 新公司成立商業(yè)計劃書
- (精)公司向個人借款合同
- 創(chuàng)業(yè)之星學(xué)創(chuàng)杯經(jīng)營決策常見問題匯總
- 公豬站工作總結(jié)匯報
- 醫(yī)學(xué)專業(yè)醫(yī)學(xué)統(tǒng)計學(xué)試題(答案見標(biāo)注) (三)
- cnas實驗室規(guī)劃方案
- 新教材蘇教版三年級上冊科學(xué)全冊單元測試卷
- 膠囊內(nèi)鏡定位導(dǎo)航技術(shù)研究
評論
0/150
提交評論