版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
新疆維吾爾自治區(qū)沙灣一中2024-2025學(xué)年高三下學(xué)期第八次月考數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)是上的減函數(shù),當(dāng)最小時(shí),若函數(shù)恰有兩個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B.C. D.2.已知的垂心為,且是的中點(diǎn),則()A.14 B.12 C.10 D.83.函數(shù)且的圖象是()A. B.C. D.4.有一改形塔幾何體由若千個(gè)正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊的中點(diǎn).已知最底層正方體的棱長為8,如果改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個(gè)數(shù)至少是()A.8 B.7 C.6 D.45.已知等式成立,則()A.0 B.5 C.7 D.136.已知數(shù)列中,,且當(dāng)為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),.則此數(shù)列的前項(xiàng)的和為()A. B. C. D.7.若直線的傾斜角為,則的值為()A. B. C. D.8.若不等式對(duì)恒成立,則實(shí)數(shù)的取值范圍是()A. B. C. D.9.我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果.哥德巴赫猜想是“每個(gè)大于2的偶數(shù)可以表示為兩個(gè)素?cái)?shù)(即質(zhì)數(shù))的和”,如,.在不超過20的素?cái)?shù)中,隨機(jī)選取兩個(gè)不同的數(shù),其和等于20的概率是()A. B. C. D.以上都不對(duì)10.第24屆冬奧會(huì)將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運(yùn)會(huì)會(huì)旗中五環(huán)所占面積與單獨(dú)五個(gè)環(huán)面積之和的比值P,某學(xué)生做如圖所示的模擬實(shí)驗(yàn):通過計(jì)算機(jī)模擬在長為10,寬為6的長方形奧運(yùn)會(huì)旗內(nèi)隨機(jī)取N個(gè)點(diǎn),經(jīng)統(tǒng)計(jì)落入五環(huán)內(nèi)部及其邊界上的點(diǎn)數(shù)為n個(gè),已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.11.已知函數(shù)若函數(shù)在上零點(diǎn)最多,則實(shí)數(shù)的取值范圍是()A. B. C. D.12.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點(diǎn),直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點(diǎn),設(shè)λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣12二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)的最大值為3,的圖象與y軸的交點(diǎn)坐標(biāo)為,其相鄰兩條對(duì)稱軸間的距離為2,則14.已知內(nèi)角,,的對(duì)邊分別為,,.,,則_________.15.已知等比數(shù)列滿足公比,為其前項(xiàng)和,,,構(gòu)成等差數(shù)列,則_______.16.已知函數(shù)為奇函數(shù),,且與圖象的交點(diǎn)為,,…,,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若在處取得極值,求的值;(2)求在區(qū)間上的最小值;(3)在(1)的條件下,若,求證:當(dāng)時(shí),恒有成立.18.(12分)在中,內(nèi)角的對(duì)邊分別是,已知.(1)求的值;(2)若,求的面積.19.(12分)如圖,三棱柱的側(cè)棱垂直于底面,且,,,,是棱的中點(diǎn).(1)證明:;(2)求二面角的余弦值.20.(12分)已知函數(shù).(1)當(dāng)時(shí),求不等式的解集;(2)若的圖象與軸圍成的三角形面積大于6,求的取值范圍.21.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,以橢圓C左頂點(diǎn)T為圓心作圓,設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.(1)求橢圓C的方程;(2)求的最小值,并求此時(shí)圓T的方程;(3)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求證:為定值.22.(10分)若不等式在時(shí)恒成立,則的取值范圍是__________.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
首先根據(jù)為上的減函數(shù),列出不等式組,求得,所以當(dāng)最小時(shí),,之后將函數(shù)零點(diǎn)個(gè)數(shù)轉(zhuǎn)化為函數(shù)圖象與直線交點(diǎn)的個(gè)數(shù)問題,畫出圖形,數(shù)形結(jié)合得到結(jié)果.【詳解】由于為上的減函數(shù),則有,可得,所以當(dāng)最小時(shí),,函數(shù)恰有兩個(gè)零點(diǎn)等價(jià)于方程有兩個(gè)實(shí)根,等價(jià)于函數(shù)與的圖像有兩個(gè)交點(diǎn).畫出函數(shù)的簡圖如下,而函數(shù)恒過定點(diǎn),數(shù)形結(jié)合可得的取值范圍為.故選:A.該題考查的是有關(guān)函數(shù)的問題,涉及到的知識(shí)點(diǎn)有分段函數(shù)在定義域上單調(diào)減求參數(shù)的取值范圍,根據(jù)函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍,數(shù)形結(jié)合思想的應(yīng)用,屬于中檔題目.2.A【解析】
由垂心的性質(zhì),得到,可轉(zhuǎn)化,又即得解.【詳解】因?yàn)闉榈拇剐模?,所以,而,所以,因?yàn)槭堑闹悬c(diǎn),所以.故選:A本題考查了利用向量的線性運(yùn)算和向量的數(shù)量積的運(yùn)算率,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.3.B【解析】
先判斷函數(shù)的奇偶性,再取特殊值,利用零點(diǎn)存在性定理判斷函數(shù)零點(diǎn)分布情況,即可得解.【詳解】由題可知定義域?yàn)?,,是偶函?shù),關(guān)于軸對(duì)稱,排除C,D.又,,在必有零點(diǎn),排除A.故選:B.本題考查了函數(shù)圖象的判斷,考查了函數(shù)的性質(zhì),屬于中檔題.4.A【解析】
則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,以此類推,能求出改形塔的最上層正方體的邊長小于1時(shí)該塔形中正方體的個(gè)數(shù)的最小值的求法.【詳解】最底層正方體的棱長為8,則從下往上第二層正方體的棱長為:,從下往上第三層正方體的棱長為:,從下往上第四層正方體的棱長為:,從下往上第五層正方體的棱長為:,從下往上第六層正方體的棱長為:,從下往上第七層正方體的棱長為:,從下往上第八層正方體的棱長為:,∴改形塔的最上層正方體的邊長小于1,那么該塔形中正方體的個(gè)數(shù)至少是8.故選:A.本小題主要考查正方體有關(guān)計(jì)算,屬于基礎(chǔ)題.5.D【解析】
根據(jù)等式和特征和所求代數(shù)式的值的特征用特殊值法進(jìn)行求解即可.【詳解】由可知:令,得;令,得;令,得,得,,而,所以.故選:D本題考查了二項(xiàng)式定理的應(yīng)用,考查了特殊值代入法,考查了數(shù)學(xué)運(yùn)算能力.6.A【解析】
根據(jù)分組求和法,利用等差數(shù)列的前項(xiàng)和公式求出前項(xiàng)的奇數(shù)項(xiàng)的和,利用等比數(shù)列的前項(xiàng)和公式求出前項(xiàng)的偶數(shù)項(xiàng)的和,進(jìn)而可求解.【詳解】當(dāng)為奇數(shù)時(shí),,則數(shù)列奇數(shù)項(xiàng)是以為首項(xiàng),以為公差的等差數(shù)列,當(dāng)為偶數(shù)時(shí),,則數(shù)列中每個(gè)偶數(shù)項(xiàng)加是以為首項(xiàng),以為公比的等比數(shù)列.所以.故選:A本題考查了數(shù)列分組求和、等差數(shù)列的前項(xiàng)和公式、等比數(shù)列的前項(xiàng)和公式,需熟記公式,屬于基礎(chǔ)題.7.B【解析】
根據(jù)題意可得:,所求式子利用二倍角的正弦函數(shù)公式化簡,再利用同角三角函數(shù)間的基本關(guān)系弦化切后,將代入計(jì)算即可求出值.【詳解】由于直線的傾斜角為,所以,則故答案選B本題考查二倍角的正弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及直線傾斜角與斜率之間的關(guān)系,熟練掌握公式是解本題的關(guān)鍵.8.B【解析】
轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,求函數(shù)最值,即得解.【詳解】由,可知.設(shè),則,所以函數(shù)在上單調(diào)遞增,所以.所以.故的取值范圍是.故選:B本題考查了導(dǎo)數(shù)在恒成立問題中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.9.A【解析】
首先確定不超過的素?cái)?shù)的個(gè)數(shù),根據(jù)古典概型概率求解方法計(jì)算可得結(jié)果.【詳解】不超過的素?cái)?shù)有,,,,,,,,共個(gè),從這個(gè)素?cái)?shù)中任選個(gè),有種可能;其中選取的兩個(gè)數(shù),其和等于的有,,共種情況,故隨機(jī)選出兩個(gè)不同的數(shù),其和等于的概率.故選:.本題考查古典概型概率問題的求解,屬于基礎(chǔ)題.10.B【解析】
根據(jù)比例關(guān)系求得會(huì)旗中五環(huán)所占面積,再計(jì)算比值.【詳解】設(shè)會(huì)旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.本題考查面積型幾何概型的問題求解,屬基礎(chǔ)題.11.D【解析】
將函數(shù)的零點(diǎn)個(gè)數(shù)問題轉(zhuǎn)化為函數(shù)與直線的交點(diǎn)的個(gè)數(shù)問題,畫出函數(shù)的圖象,易知直線過定點(diǎn),故與在時(shí)的圖象必有兩個(gè)交點(diǎn),故只需與在時(shí)的圖象有兩個(gè)交點(diǎn),再與切線問題相結(jié)合,即可求解.【詳解】由圖知與有個(gè)公共點(diǎn)即可,即,當(dāng)設(shè)切點(diǎn),則,.故選:D.本題考查了函數(shù)的零點(diǎn)個(gè)數(shù)的問題,曲線的切線問題,注意運(yùn)用轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于較難的壓軸題.12.D【解析】
分別聯(lián)立直線與拋物線的方程,利用韋達(dá)定理,可得,,然后計(jì)算,可得結(jié)果.【詳解】設(shè),聯(lián)立則,因?yàn)橹本€經(jīng)過C的焦點(diǎn),所以.同理可得,所以故選:D.本題考查的是直線與拋物線的交點(diǎn)問題,運(yùn)用拋物線的焦點(diǎn)弦求參數(shù),屬基礎(chǔ)題。二、填空題:本題共4小題,每小題5分,共20分。13.【解析】,由題意,得,解得,則的周期為4,且,所以.考點(diǎn):三角函數(shù)的圖像與性質(zhì).14.【解析】
利用正弦定理求得角B,再利用二倍角的余弦公式,即可求解.【詳解】由正弦定理得,,.故答案為:.本題考查了正弦定理求角,三角恒等變換,屬于基礎(chǔ)題.15.0【解析】
利用等差中項(xiàng)以及等比數(shù)列的前項(xiàng)和公式即可求解.【詳解】由,,是等差數(shù)列可知因?yàn)?,所以,故答案為?本題考查了等差中項(xiàng)的應(yīng)用、等比數(shù)列的前項(xiàng)和公式,需熟記公式,屬于基礎(chǔ)題.16.18【解析】
由題意得函數(shù)f(x)與g(x)的圖像都關(guān)于點(diǎn)對(duì)稱,結(jié)合函數(shù)的對(duì)稱性進(jìn)行求解即可.【詳解】函數(shù)為奇函數(shù),函數(shù)關(guān)于點(diǎn)對(duì)稱,,函數(shù)關(guān)于點(diǎn)對(duì)稱,所以兩個(gè)函數(shù)圖象的交點(diǎn)也關(guān)于點(diǎn)(1,2)對(duì)稱,與圖像的交點(diǎn)為,,…,,兩兩關(guān)于點(diǎn)對(duì)稱,.故答案為:18本題考查了函數(shù)對(duì)稱性的應(yīng)用,結(jié)合函數(shù)奇偶性以及分式函數(shù)的性質(zhì)求出函數(shù)的對(duì)稱性是解決本題的關(guān)鍵,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)2;(2);(3)證明見解析【解析】
(1)先求出函數(shù)的定義域和導(dǎo)數(shù),由已知函數(shù)在處取得極值,得到,即可求解的值;(2)由(1)得,定義域?yàn)椋?,和三種情況討論,分別求得函數(shù)的最小值,即可得到結(jié)論;(3)由,得到,把,只需證,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由,定義域?yàn)?,則,因?yàn)楹瘮?shù)在處取得極值,所以,即,解得,經(jīng)檢驗(yàn),滿足題意,所以.(2)由(1)得,定義域?yàn)?,?dāng)時(shí),有,在區(qū)間上單調(diào)遞增,最小值為,當(dāng)時(shí),由得,且,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;所以在區(qū)間上單調(diào)遞增,最小值為,當(dāng)時(shí),則,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;所以在處取得最小值,綜上可得:當(dāng)時(shí),在區(qū)間上的最小值為1,當(dāng)時(shí),在區(qū)間上的最小值為.(3)由得,當(dāng)時(shí),,則,欲證,只需證,即證,即,設(shè),則,當(dāng)時(shí),,在區(qū)間上單調(diào)遞增,當(dāng)時(shí),,即,故,即當(dāng)時(shí),恒有成立.本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,以及不等式的證明,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計(jì)算能力,對(duì)于此類問題,通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.18.(1);(2).【解析】
(1)由,利用余弦定理可得,結(jié)合可得結(jié)果;(2)由正弦定理,,利用三角形內(nèi)角和定理可得,由三角形面積公式可得結(jié)果.【詳解】(1)由題意,得.∵.∴,∵,∴.(2)∵,由正弦定理,可得.∵a>b,∴,∴.∴.本題主要考查正弦定理、余弦定理及特殊角的三角函數(shù),屬于中檔題.對(duì)余弦定理一定要熟記兩種形式:(1);(2),同時(shí)還要熟練掌握運(yùn)用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關(guān)的問題時(shí),還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應(yīng)用.19.(1)詳見解析;(2).【解析】
(1)根據(jù)平面,四邊形是矩形,由為中點(diǎn),且,利用平面幾何知識(shí),可得,又平面,所以,根據(jù)線面垂直的判定定理可有平面,從而得證.(2)分別以,,為,,軸建立空間直角坐標(biāo)系,得到,,,,分別求得平和平面的法向量,代入二面角向量公式求解.【詳解】(1)證明:∵平面,∴四邊形是矩形,∵為中點(diǎn),且,∴,∵,,,∴.∴,∵,∴與相似,∴,∴,∴,∵,∴平面,∴平面,∵平面,∴,∴平面,∴.(2)如圖,分別以,,為,,軸建立空間直角坐標(biāo)系,則,,,設(shè)平面的法向量為,則,,解得:,同理,平面的法向量,設(shè)二面角的大小為,則.即二面角的余弦值為.本題主要考查線線垂直、線面垂直的轉(zhuǎn)化以及二面角的求法,還考查了轉(zhuǎn)化化歸的思想和推理論證、運(yùn)算求解的能力,屬于中檔題.20.(Ⅰ)(Ⅱ)(2,+∞)【解析】試題分析:(Ⅰ)由題意零點(diǎn)分段即可確定不等式的解集為;(Ⅱ)由題意可得面積函數(shù)為為,求解不等式可得實(shí)數(shù)a的取值范圍為試題解析:(I)當(dāng)時(shí),化為,當(dāng)時(shí),不等式化為,無解;當(dāng)時(shí),不等式化為,解得;當(dāng)時(shí),不等式化為,解得.所以的解集為.(II)由題設(shè)可得,所以函數(shù)的圖像與x軸圍成的三角形的三個(gè)頂點(diǎn)分別為,,,的面積為.由題設(shè)得,故.所以a的取值范圍為21.(1);(2);(3)【解析】
(1)依題意,得,,由此能求出橢圓C的方程.(2)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,設(shè),,設(shè),由于點(diǎn)在橢圓C上,故,由,知,由此能求出圓T的方程.(3)設(shè),則直線MP的方程為:,令,得,同理:,由此能證明為定值.【詳解】(1)依題意,得,,,故橢圓C的方程為.(2)點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱,設(shè),,設(shè),由于點(diǎn)在橢圓C上,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024預(yù)制板購銷合同
- 2025年度瓷磚研發(fā)中心實(shí)驗(yàn)室建設(shè)與運(yùn)營合同3篇
- 2025年度危險(xiǎn)化學(xué)品儲(chǔ)存安全管理承包合同4篇
- 2025年度智能物流中心建設(shè)與運(yùn)營管理合同4篇
- 2025年度商業(yè)地產(chǎn)租賃代理服務(wù)合同模板4篇
- 2024物業(yè)項(xiàng)目策劃2024委托代理合同
- 2025年度醫(yī)療器械代生產(chǎn)加工合同范本4篇
- 2025年度特殊用途車牌租賃與押金管理協(xié)議4篇
- 2025年度展會(huì)現(xiàn)場安保及應(yīng)急預(yù)案服務(wù)合同3篇
- 2024鐵路鋼軌鋪設(shè)及維護(hù)工程協(xié)議細(xì)則
- 勞動(dòng)合同續(xù)簽意見單
- 大學(xué)生國家安全教育意義
- 2024年保育員(初級(jí))培訓(xùn)計(jì)劃和教學(xué)大綱-(目錄版)
- 河北省石家莊市2023-2024學(xué)年高二上學(xué)期期末考試 語文 Word版含答案
- 企業(yè)正確認(rèn)識(shí)和運(yùn)用矩陣式管理
- 分布式光伏高處作業(yè)專項(xiàng)施工方案
- 陳閱增普通生物學(xué)全部課件
- 檢驗(yàn)科主任就職演講稿范文
- 人防工程主體監(jiān)理質(zhì)量評(píng)估報(bào)告
- 20225GRedCap通信技術(shù)白皮書
- 燃?xì)庥邢薰究蛻舴?wù)規(guī)范制度
評(píng)論
0/150
提交評(píng)論