版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若雙曲線的離心率,則該雙曲線的焦點(diǎn)到其漸近線的距離為()A. B.2 C. D.12.設(shè)雙曲線(a>0,b>0)的右焦點(diǎn)為F,右頂點(diǎn)為A,過F作AF的垂線與雙曲線交于B,C兩點(diǎn),過B,C分別作AC,AB的垂線交于點(diǎn)D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.3.已知集合,若,則實(shí)數(shù)的取值范圍為()A. B. C. D.4.將函數(shù)的圖像向左平移個(gè)單位長(zhǎng)度后,得到的圖像關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,則的最小值為()A. B. C. D.5.已知非零向量,滿足,,則與的夾角為()A. B. C. D.6.如圖,用一邊長(zhǎng)為的正方形硬紙,按各邊中點(diǎn)垂直折起四個(gè)小三角形,做成一個(gè)蛋巢,將體積為的雞蛋(視為球體)放入其中,蛋巢形狀保持不變,則雞蛋中心(球心)與蛋巢底面的距離為()A. B. C. D.7.已知拋物線和點(diǎn),直線與拋物線交于不同兩點(diǎn),,直線與拋物線交于另一點(diǎn).給出以下判斷:①直線與直線的斜率乘積為;②軸;③以為直徑的圓與拋物線準(zhǔn)線相切.其中,所有正確判斷的序號(hào)是()A.①②③ B.①② C.①③ D.②③8.羽毛球混合雙打比賽每隊(duì)由一男一女兩名運(yùn)動(dòng)員組成.某班級(jí)從名男生,,和名女生,,中各隨機(jī)選出兩名,把選出的人隨機(jī)分成兩隊(duì)進(jìn)行羽毛球混合雙打比賽,則和兩人組成一隊(duì)參加比賽的概率為()A. B. C. D.9.設(shè)復(fù)數(shù)滿足,則()A. B. C. D.10.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件11.記遞增數(shù)列的前項(xiàng)和為.若,,且對(duì)中的任意兩項(xiàng)與(),其和,或其積,或其商仍是該數(shù)列中的項(xiàng),則()A. B.C. D.12.下列函數(shù)中,在定義域上單調(diào)遞增,且值域?yàn)榈氖牵ǎ〢. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列滿足,且,則______.14.設(shè)直線過雙曲線的一個(gè)焦點(diǎn),且與的一條對(duì)稱軸垂直,與交于兩點(diǎn),為的實(shí)軸長(zhǎng)的2倍,則雙曲線的離心率為.15.已知集合,,則_________.16.直線xsinα+y+2=0的傾斜角的取值范圍是________________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(12分)已知等差數(shù)列和等比數(shù)列的各項(xiàng)均為整數(shù),它們的前項(xiàng)和分別為,且,.(1)求數(shù)列,的通項(xiàng)公式;(2)求;(3)是否存在正整數(shù),使得恰好是數(shù)列或中的項(xiàng)?若存在,求出所有滿足條件的的值;若不存在,說(shuō)明理由.18.(12分)已知為橢圓的左、右焦點(diǎn),離心率為,點(diǎn)在橢圓上.(1)求橢圓的方程;(2)過的直線分別交橢圓于和,且,問是否存在常數(shù),使得成等差數(shù)列?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.19.(12分)甲、乙兩班各派三名同學(xué)參加知識(shí)競(jìng)賽,每人回答一個(gè)問題,答對(duì)得10分,答錯(cuò)得0分,假設(shè)甲班三名同學(xué)答對(duì)的概率都是,乙班三名同學(xué)答對(duì)的概率分別是,,,且這六名同學(xué)答題正確與否相互之間沒有影響.(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發(fā)生的概率;(2)用表示甲班總得分,求隨機(jī)變量的概率分布和數(shù)學(xué)期望.20.(12分)設(shè)點(diǎn)分別是橢圓的左,右焦點(diǎn),為橢圓上任意一點(diǎn),且的最小值為1.(1)求橢圓的方程;(2)如圖,直線與軸交于點(diǎn),過點(diǎn)且斜率的直線與橢圓交于兩點(diǎn),為線段的中點(diǎn),直線交直線于點(diǎn),證明:直線.21.(12分)已知函數(shù)(,),且對(duì)任意,都有.(Ⅰ)用含的表達(dá)式表示;(Ⅱ)若存在兩個(gè)極值點(diǎn),,且,求出的取值范圍,并證明;(Ⅲ)在(Ⅱ)的條件下,判斷零點(diǎn)的個(gè)數(shù),并說(shuō)明理由.22.(10分)已知數(shù)列滿足且(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
根據(jù)雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點(diǎn)到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點(diǎn)坐標(biāo)為,所以,則雙曲線漸近線方程為,即,不妨取右焦點(diǎn),則由點(diǎn)到直線距離公式可得,故選:C.【點(diǎn)睛】本題考查了雙曲線的幾何性質(zhì)及簡(jiǎn)單應(yīng)用,漸近線方程的求法,點(diǎn)到直線距離公式的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.2.A【解析】
由題意,根據(jù)雙曲線的對(duì)稱性知在軸上,設(shè),則由得:,因?yàn)榈街本€的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.3.A【解析】
解一元二次不等式化簡(jiǎn)集合的表示,求解函數(shù)的定義域化簡(jiǎn)集合的表示,根據(jù)可以得到集合、之間的關(guān)系,結(jié)合數(shù)軸進(jìn)行求解即可.【詳解】,.因?yàn)椋杂?,因此?故選:A【點(diǎn)睛】本題考查了已知集合運(yùn)算的結(jié)果求參數(shù)取值范圍問題,考查了解一元二次不等式,考查了函數(shù)的定義域,考查了數(shù)學(xué)運(yùn)算能力.4.B【解析】
由余弦的二倍角公式化簡(jiǎn)函數(shù)為,要想在括號(hào)內(nèi)構(gòu)造變?yōu)檎液瘮?shù),至少需要向左平移個(gè)單位長(zhǎng)度,即為答案.【詳解】由題可知,對(duì)其向左平移個(gè)單位長(zhǎng)度后,,其圖像關(guān)于坐標(biāo)原點(diǎn)對(duì)稱故的最小值為故選:B【點(diǎn)睛】本題考查三角函數(shù)圖象性質(zhì)與平移變換,還考查了余弦的二倍角公式逆運(yùn)用,屬于簡(jiǎn)單題.5.B【解析】
由平面向量垂直的數(shù)量積關(guān)系化簡(jiǎn),即可由平面向量數(shù)量積定義求得與的夾角.【詳解】根據(jù)平面向量數(shù)量積的垂直關(guān)系可得,,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B【點(diǎn)睛】本題考查了平面向量數(shù)量積的運(yùn)算,平面向量夾角的求法,屬于基礎(chǔ)題.6.D【解析】
先求出球心到四個(gè)支點(diǎn)所在球的小圓的距離,再加上側(cè)面三角形的高,即可求解.【詳解】設(shè)四個(gè)支點(diǎn)所在球的小圓的圓心為,球心為,由題意,球的體積為,即可得球的半徑為1,又由邊長(zhǎng)為的正方形硬紙,可得圓的半徑為,利用球的性質(zhì)可得,又由到底面的距離即為側(cè)面三角形的高,其中高為,所以球心到底面的距離為.故選:D.【點(diǎn)睛】本題主要考查了空間幾何體的結(jié)構(gòu)特征,以及球的性質(zhì)的綜合應(yīng)用,著重考查了數(shù)形結(jié)合思想,以及推理與計(jì)算能力,屬于基礎(chǔ)題.7.B【解析】
由題意,可設(shè)直線的方程為,利用韋達(dá)定理判斷第一個(gè)結(jié)論;將代入拋物線的方程可得,,從而,,進(jìn)而判斷第二個(gè)結(jié)論;設(shè)為拋物線的焦點(diǎn),以線段為直徑的圓為,則圓心為線段的中點(diǎn).設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線的距離為,顯然,,三點(diǎn)不共線,進(jìn)而判斷第三個(gè)結(jié)論.【詳解】解:由題意,可設(shè)直線的方程為,代入拋物線的方程,有.設(shè)點(diǎn),的坐標(biāo)分別為,,則,.所.則直線與直線的斜率乘積為.所以①正確.將代入拋物線的方程可得,,從而,,根據(jù)拋物線的對(duì)稱性可知,,兩點(diǎn)關(guān)于軸對(duì)稱,所以直線軸.所以②正確.如圖,設(shè)為拋物線的焦點(diǎn),以線段為直徑的圓為,則圓心為線段的中點(diǎn).設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線的距離為,顯然,,三點(diǎn)不共線,則.所以③不正確.故選:B.【點(diǎn)睛】本題主要考查拋物線的定義與幾何性質(zhì)、直線與拋物線的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力和創(chuàng)新意識(shí),考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于難題.8.B【解析】
根據(jù)組合知識(shí),計(jì)算出選出的人分成兩隊(duì)混合雙打的總數(shù)為,然后計(jì)算和分在一組的數(shù)目為,最后簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:分別從3名男生、3名女生中選2人:將選中2名女生平均分為兩組:將選中2名男生平均分為兩組:則選出的人分成兩隊(duì)混合雙打的總數(shù)為:和分在一組的數(shù)目為所以所求的概率為故選:B【點(diǎn)睛】本題考查排列組合的綜合應(yīng)用,對(duì)平均分組的問題要掌握公式,比如:平均分成組,則要除以,即,審清題意,細(xì)心計(jì)算,考驗(yàn)分析能力,屬中檔題.9.D【解析】
根據(jù)復(fù)數(shù)運(yùn)算,即可容易求得結(jié)果.【詳解】.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)的四則運(yùn)算,屬基礎(chǔ)題.10.C【解析】
先根據(jù)直線與直線平行確定的值,進(jìn)而即可確定結(jié)果.【詳解】因?yàn)橹本€與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【點(diǎn)睛】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎(chǔ)題型.11.D【解析】
由題意可得,從而得到,再由就可以得出其它各項(xiàng)的值,進(jìn)而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數(shù)列中的項(xiàng),或者或者是該數(shù)列中的項(xiàng),又?jǐn)?shù)列是遞增數(shù)列,,,,只有是該數(shù)列中的項(xiàng),同理可以得到,,,也是該數(shù)列中的項(xiàng),且有,,或(舍,,根據(jù),,,同理易得,,,,,,,故選:D.【點(diǎn)睛】本題考查數(shù)列的新定義的理解和運(yùn)用,以及運(yùn)算能力和推理能力,屬于中檔題.12.B【解析】
分別作出各個(gè)選項(xiàng)中的函數(shù)的圖象,根據(jù)圖象觀察可得結(jié)果.【詳解】對(duì)于,圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯(cuò)誤;對(duì)于,的圖象如下圖所示:則在定義域上單調(diào)遞增,且值域?yàn)?,正確;對(duì)于,的圖象如下圖所示:則函數(shù)單調(diào)遞增,但值域?yàn)椋e(cuò)誤;對(duì)于,的圖象如下圖所示:則函數(shù)在定義域上不單調(diào),錯(cuò)誤.故選:.【點(diǎn)睛】本題考查函數(shù)單調(diào)性和值域的判斷問題,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
數(shù)列滿足知,數(shù)列以3為公比的等比數(shù)列,再由已知結(jié)合等比數(shù)列的性質(zhì)求得的值即可.【詳解】,數(shù)列是以3為公比的等比數(shù)列,又,,.故答案為:.【點(diǎn)睛】本題考查了等比數(shù)列定義,考查了對(duì)數(shù)的運(yùn)算性質(zhì),考查了等比數(shù)列的通項(xiàng)公式,是中檔題.14.【解析】
不妨設(shè)雙曲線,焦點(diǎn),令,由的長(zhǎng)為實(shí)軸的二倍能夠推導(dǎo)出的離心率.【詳解】不妨設(shè)雙曲線,焦點(diǎn),對(duì)稱軸,由題設(shè)知,因?yàn)榈拈L(zhǎng)為實(shí)軸的二倍,,,,故答案為.【點(diǎn)睛】本題主要考查利用雙曲線的簡(jiǎn)單性質(zhì)求雙曲線的離心率,屬于中檔題.求解與雙曲線性質(zhì)有關(guān)的問題時(shí)要結(jié)合圖形進(jìn)行分析,既使不畫出圖形,思考時(shí)也要聯(lián)想到圖形,當(dāng)涉及頂點(diǎn)、焦點(diǎn)、實(shí)軸、虛軸、漸近線等雙曲線的基本量時(shí),要理清它們之間的關(guān)系,挖掘出它們之間的內(nèi)在聯(lián)系.求離心率問題應(yīng)先將用有關(guān)的一些量表示出來(lái),再利用其中的一些關(guān)系構(gòu)造出關(guān)于的等式,從而求出的值.15.【解析】
根據(jù)交集的定義即可寫出答案?!驹斀狻?,,故填【點(diǎn)睛】本題考查集合的交集,需熟練掌握集合交集的定義,屬于基礎(chǔ)題。16.【解析】因?yàn)閟inα∈[-1,1],所以-sinα∈[-1,1],所以已知直線的斜率范圍為[-1,1],由傾斜角與斜率關(guān)系得傾斜角范圍是.答案:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.(1);(2);(3)存在,1.【解析】
(1)利用基本量法直接計(jì)算即可;(2)利用錯(cuò)位相減法計(jì)算;(3),令可得,,討論即可.【詳解】(1)設(shè)數(shù)列的公差為,數(shù)列的公比為,因?yàn)?,所以,即,解得,或(舍去?所以.(2),,所以,所以.(3)由(1)可得,,所以.因?yàn)槭菙?shù)列或中的一項(xiàng),所以,所以,因?yàn)椋?,又,則或.當(dāng)時(shí),有,即,令.則.當(dāng)時(shí),;當(dāng)時(shí),,即.由,知無(wú)整數(shù)解.當(dāng)時(shí),有,即存在使得是數(shù)列中的第2項(xiàng),故存在正整數(shù),使得是數(shù)列中的項(xiàng).【點(diǎn)睛】本題考查數(shù)列的綜合應(yīng)用,涉及到等差、等比數(shù)列的通項(xiàng),錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,數(shù)列中的存在性問題,是一道較為綜合的題.18.(1);(2)存在,.【解析】
(1)由條件建立關(guān)于的方程組,可求得,得出橢圓的方程;(2)①當(dāng)直線的斜率不存在時(shí),可求得,求得,②當(dāng)直線的斜率存在且不為0時(shí),設(shè)聯(lián)立直線與橢圓的方程,求出線段,再由得出線段,根據(jù)等差中項(xiàng)可求得,得出結(jié)論.【詳解】(1)由條件得,所以橢圓的方程為:;(2),①當(dāng)直線的斜率不存在時(shí),,此時(shí),②當(dāng)直線的斜率存在且不為0時(shí),設(shè),聯(lián)立消元得,設(shè),,直線的斜率為,同理可得,所以,綜合①②,存在常數(shù),使得成等差數(shù)列.【點(diǎn)睛】本題考查利用橢圓的離心率求橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系中的弦長(zhǎng)公式的相關(guān)問題,當(dāng)兩直線的斜率具有關(guān)系時(shí),可能通過斜率的代換得出另一條線段的弦長(zhǎng),屬于中檔題.19.(1)(2)分布列見解析,期望為20【解析】
利用相互獨(dú)立事件概率公式求解即可;由題意知,隨機(jī)變量可能的取值為0,10,20,30,分別求出對(duì)應(yīng)的概率,列出分布列并代入數(shù)學(xué)期望公式求解即可.【詳解】(1)由相互獨(dú)立事件概率公式可得,(2)由題意知,隨機(jī)變量可能的取值為0,10,20,30.,,,,所以,的概率分布列為0102030所以數(shù)學(xué)期望.【點(diǎn)睛】本題考查相互獨(dú)立事件概率公式和離散型隨機(jī)變量的分布列及其數(shù)學(xué)期望;考查運(yùn)算求解能力;確定隨機(jī)變量可能的取值,求出對(duì)應(yīng)的概率是求解本題的關(guān)鍵;屬于中檔題、??碱}型.20.(1)(2)見解析【解析】
(1)設(shè),求出后由二次函數(shù)知識(shí)得最小值,從而得,即得橢圓方程;(2)設(shè)直線的方程為,代入橢圓方程整理,設(shè),由韋達(dá)定理得,設(shè),利用三點(diǎn)共線,求得,然后驗(yàn)證即可.【詳解】解:(1)設(shè),則,所以,因?yàn)椋援?dāng)時(shí),值最小,所以,解得,(舍負(fù))所以,所以橢圓的方程為,(2)設(shè)直線的方程為,聯(lián)立,得.設(shè),則,設(shè),因?yàn)槿c(diǎn)共線,又所以,解得.而所以直線軸,即.【點(diǎn)睛】本題考查求橢圓方程,考查直線與橢圓相交問題.直線與橢圓相交問題,采取設(shè)而不求思想,設(shè),設(shè)直線方程,應(yīng)用韋達(dá)定理,得出,再代入題中需要計(jì)算可證明的式子參與化簡(jiǎn)變形.21.(1)(2)見解析(3)見解析【解析】試題分析:利用賦值法求出關(guān)系,求函數(shù)導(dǎo)數(shù),要求函數(shù)有兩個(gè)極
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 創(chuàng)傷性骨髓炎的健康宣教
- 兒童分離性焦慮障礙的健康宣教
- 《政府的權(quán)力用》課件
- 社團(tuán)之光照亮前行計(jì)劃
- 班級(jí)年度計(jì)劃書
- 學(xué)生反饋與課程調(diào)整流程計(jì)劃
- 八年級(jí)英語(yǔ)NewspapersSpeaking課件
- 文化建設(shè)的總結(jié)與員工參與計(jì)劃
- 項(xiàng)目成本控制管理計(jì)劃
- 舞臺(tái)劇社團(tuán)創(chuàng)意演出構(gòu)思計(jì)劃
- 弱電系統(tǒng)施工方案(完整版)
- 設(shè)計(jì)一臥式單面多軸鉆孔組合機(jī)床動(dòng)力滑臺(tái)的液壓系統(tǒng)
- 行政事業(yè)單位管理辦法
- 蓄能器的基本功能
- 《典范英語(yǔ)》(1a)評(píng)價(jià)方案
- 煤礦井下有毒有害氣體管理規(guī)定
- 戶口本日文翻譯樣文(模板)
- 關(guān)于調(diào)整污水處理費(fèi)征收標(biāo)準(zhǔn)的申請(qǐng)
- 倉(cāng)儲(chǔ)合同案例分析(共6篇)
- 九年級(jí)上冊(cè)數(shù)學(xué)知識(shí)點(diǎn)考點(diǎn)
- 研究開發(fā)費(fèi)用加計(jì)扣除的鑒證報(bào)告記錄要求
評(píng)論
0/150
提交評(píng)論