版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
新疆伊犁市奎屯市第一高級中學2025屆高三第二學期第二次檢測試題數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖在直角坐標系中,過原點作曲線的切線,切點為,過點分別作、軸的垂線,垂足分別為、,在矩形中隨機選取一點,則它在陰影部分的概率為()A. B. C. D.2.如圖,在△ABC中,點M是邊BC的中點,將△ABM沿著AM翻折成△AB'M,且點B'不在平面AMC內,點P是線段B'C上一點.若二面角P-AM-B'與二面角P-AM-C的平面角相等,則直線AP經(jīng)過△AB'CA.重心 B.垂心 C.內心 D.外心3.已知△ABC中,.點P為BC邊上的動點,則的最小值為()A.2 B. C. D.4.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.5.已知等比數(shù)列的各項均為正數(shù),設其前n項和,若(),則()A.30 B. C. D.626.將函數(shù)的圖象向左平移個單位長度,得到的函數(shù)為偶函數(shù),則的值為()A. B. C. D.7.下列函數(shù)中,值域為的偶函數(shù)是()A. B. C. D.8.已知等比數(shù)列滿足,,則()A. B. C. D.9.設函數(shù)的定義域為,命題:,的否定是()A., B.,C., D.,10.A. B. C. D.11.如圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是()A.2017年第一季度GDP增速由高到低排位第5的是浙江?。瓸.與去年同期相比,2017年第一季度的GDP總量實現(xiàn)了增長.C.2017年第一季度GDP總量和增速由高到低排位均居同一位的省只有1個D.去年同期河南省的GDP總量不超過4000億元.12.已知純虛數(shù)滿足,其中為虛數(shù)單位,則實數(shù)等于()A. B.1 C. D.2二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的極大值為______.14.根據(jù)如圖所示的偽代碼,輸出的值為______.15.在中,已知是的中點,且,點滿足,則的取值范圍是_______.16.設,若關于的方程有實數(shù)解,則實數(shù)的取值范圍_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,圓C的參數(shù)方程(為參數(shù)),以O為極點,x軸的非負半軸為極軸建立極坐標系.(1)求圓C的極坐標方程;(2)直線l的極坐標方程是,射線與圓C的交點為O、P,與直線l的交點為Q,求線段的長.18.(12分)已知函數(shù),.(1)證明:函數(shù)的極小值點為1;(2)若函數(shù)在有兩個零點,證明:.19.(12分)設函數(shù),(1)當,,求不等式的解集;(2)已知,,的最小值為1,求證:.20.(12分)如圖,正方形所在平面外一點滿足,其中分別是與的中點.(1)求證:;(2)若,且二面角的平面角的余弦值為,求與平面所成角的正弦值.21.(12分)已知函數(shù).(1)討論的單調性并指出相應單調區(qū)間;(2)若,設是函數(shù)的兩個極值點,若,且恒成立,求實數(shù)k的取值范圍.22.(10分)在最新公布的湖南新高考方案中,“”模式要求學生在語數(shù)外3門全國統(tǒng)考科目之外,在歷史和物理2門科目中必選且只選1門,再從化學、生物、地理、政治4門科目中任選2門,后三科的高考成績按新的規(guī)則轉換后計入高考總分.相應地,高校在招生時可對特定專業(yè)設置具體的選修科目要求.雙超中學高一年級有學生1200人,現(xiàn)從中隨機抽取40人進行選科情況調查,用數(shù)字1~6分別依次代表歷史、物理、化學、生物、地理、政治6科,得到如下的統(tǒng)計表:序號選科情況序號選科情況序號選科情況序號選科情況11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)雙超中學規(guī)定:每個選修班最多編排50人且盡量滿額編班,每位老師執(zhí)教2個選修班(當且僅當一門科目的選課班級總數(shù)為奇數(shù)時,允許這門科目的1位老師只教1個班).已知雙超中學高一年級現(xiàn)有化學、生物科目教師每科各8人,用樣本估計總體,則化學、生物兩科的教師人數(shù)是否需要調整?如果需要調整,各需增加或減少多少人?(2)請創(chuàng)建列聯(lián)表,運用獨立性檢驗的知識進行分析,探究是否有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關.附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其熱門人文專業(yè)的招生簡章中明確要求,僅允許選修了歷史科目,且在政治和地理2門中至少選修了1門的考生報名.現(xiàn)從雙超中學高一新生中隨機抽取3人,設具備高校專業(yè)報名資格的人數(shù)為,用樣本的頻率估計概率,求的分布列與期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
設所求切線的方程為,聯(lián)立,消去得出關于的方程,可得出,求出的值,進而求得切點的坐標,利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設所求切線的方程為,則,聯(lián)立,消去得①,由,解得,方程①為,解得,則點,所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.本題考查定積分的計算以及幾何概型,同時也涉及了二次函數(shù)的切線方程的求解,考查計算能力,屬于中等題.2.A【解析】
根據(jù)題意P到兩個平面的距離相等,根據(jù)等體積法得到SΔPB'M【詳解】二面角P-AM-B'與二面角P-AM-C的平面角相等,故P到兩個平面的距離相等.故VP-AB'M=VP-ACM,即故B'P=CP,故P為CB'中點.故選:A.本題考查了二面角,等體積法,意在考查學生的計算能力和空間想象能力.3.D【解析】
以BC的中點為坐標原點,建立直角坐標系,可得,設,運用向量的坐標表示,求得點A的軌跡,進而得到關于a的二次函數(shù),可得最小值.【詳解】以BC的中點為坐標原點,建立如圖的直角坐標系,可得,設,由,可得,即,則,當時,的最小值為.故選D.本題考查向量數(shù)量積的坐標表示,考查轉化思想和二次函數(shù)的值域解法,考查運算能力,屬于中檔題.4.D【解析】
試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點:本題主要考查三視圖及幾何體體積的計算.5.B【解析】
根據(jù),分別令,結合等比數(shù)列的通項公式,得到關于首項和公比的方程組,解方程組求出首項和公式,最后利用等比數(shù)列前n項和公式進行求解即可.【詳解】設等比數(shù)列的公比為,由題意可知中:.由,分別令,可得、,由等比數(shù)列的通項公式可得:,因此.故選:B本題考查了等比數(shù)列的通項公式和前n項和公式的應用,考查了數(shù)學運算能力.6.D【解析】
利用三角函數(shù)的圖象變換求得函數(shù)的解析式,再根據(jù)三角函數(shù)的性質,即可求解,得到答案.【詳解】將將函數(shù)的圖象向左平移個單位長度,可得函數(shù)又由函數(shù)為偶函數(shù),所以,解得,因為,當時,,故選D.本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的性質的應用,其中解答中熟記三角函數(shù)的圖象變換,合理應用三角函數(shù)的圖象與性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.7.C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點:1、函數(shù)的奇偶性;2、函數(shù)的值域.8.B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.9.D【解析】
根據(jù)命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因為:,是全稱命題,所以其否定是特稱命題,即,.故選:D本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎題.10.A【解析】
直接利用復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】本題正確選項:本題考查復數(shù)代數(shù)形式的乘除運算,是基礎的計算題.11.C【解析】
利用圖表中的數(shù)據(jù)進行分析即可求解.【詳解】對于A選項:2017年第一季度5省的GDP增速由高到低排位分別是:江蘇、遼寧、山東、河南、浙江,故A正確;對于B選項:與去年同期相比,2017年第一季度5省的GDP均有不同的增長,所以其總量也實現(xiàn)了增長,故B正確;對于C選項:2017年第一季度GDP總量由高到低排位分別是:江蘇、山東、浙江、河南、遼寧,2017年第一季度5省的GDP增速由高到低排位分別是:江蘇、遼寧、山東、河南、浙江,均居同一位的省有2個,故C錯誤;對于D選項:去年同期河南省的GDP總量,故D正確.故選:C.本題考查了圖表分析,學生的分析能力,推理能力,屬于基礎題.12.B【解析】
先根據(jù)復數(shù)的除法表示出,然后根據(jù)是純虛數(shù)求解出對應的的值即可.【詳解】因為,所以,又因為是純虛數(shù),所以,所以.故選:B.本題考查復數(shù)的除法運算以及根據(jù)復數(shù)是純虛數(shù)求解參數(shù)值,難度較易.若復數(shù)為純虛數(shù),則有.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先求函的定義域,再對函數(shù)進行求導,再解不等式得單調區(qū)間,進而求得極值點,即可求出函數(shù)的極大值.【詳解】函數(shù),,,令得,,當時,,函數(shù)單調遞增;當時,,函數(shù)單調遞減,當時,函數(shù)取到極大值,極大值為.故答案為:.本題考查利用導數(shù)研究函數(shù)的極值,考查函數(shù)與方程思想、轉化與化歸思想,考查運算求解能力,求解時注意定義域優(yōu)先法則的應用.14.7【解析】
表示初值S=1,i=1,分三次循環(huán)計算得S=10>0,輸出i=7.【詳解】S=1,i=1第一次循環(huán):S=1+1=2,i=1+2=3;第二次循環(huán):S=2+3=5,i=3+2=5;第三次循環(huán):S=5+5=10,i=5+2=7;S=10>9,循環(huán)結束,輸出:i=7.故答案為:7本題考查在程序語句的背景下已知輸入的循環(huán)結構求輸出值問題,屬于基礎題.15.【解析】
由中點公式的向量形式可得,即有,設,有,再分別討論三點共線和不共線時的情況,找到的關系,即可根據(jù)函數(shù)知識求出范圍.【詳解】是的中點,∴,即設,于是(1)當共線時,因為,①若點在之間,則,此時,;②若點在的延長線上,則,此時,.(2)當不共線時,根據(jù)余弦定理可得,解得,由,解得.綜上,故答案為:.本題主要考查學中點公式的向量形式和數(shù)量積的定義的應用,以及余弦定理的應用,涉及到函數(shù)思想和分類討論思想的應用,解題關鍵是建立函數(shù)關系式,屬于中檔題.16.【解析】
先求出,從而得函數(shù)在區(qū)間上為增函數(shù);在區(qū)間為減函數(shù).即可得的最大值為,令,得函數(shù)取得最小值,由有實數(shù)解,,進而得實數(shù)的取值范圍.【詳解】解:,當時,;當時,;函數(shù)在區(qū)間上為增函數(shù);在區(qū)間為減函數(shù).所以的最大值為,令,所以當時,函數(shù)取得最小值,又因為方程有實數(shù)解,那么,即,所以實數(shù)的取值范圍是:.故答案為:本題考查了函數(shù)的單調性,函數(shù)的最值問題,導數(shù)的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)2【解析】
(1)首先利用對圓C的參數(shù)方程(φ為參數(shù))進行消參數(shù)運算,化為普通方程,再根據(jù)普通方程化極坐標方程的公式得到圓C的極坐標方程.(2)設,聯(lián)立直線與圓的極坐標方程,解得;設,聯(lián)立直線與直線的極坐標方程,解得,可得.【詳解】(1)圓C的普通方程為,又,所以圓C的極坐標方程為.(2)設,則由解得,,得;設,則由解得,,得;所以本題考查圓的參數(shù)方程與普通方程的互化,考查圓的極坐標方程,考查極坐標方程的求解運算,考查了學生的計算能力以及轉化能力,屬于基礎題.18.(1)見解析(2)見解析【解析】
(1)利用導函數(shù)的正負確定函數(shù)的增減.(2)函數(shù)在有兩個零點,即方程在區(qū)間有兩解,令通過二次求導確定函數(shù)單調性證明參數(shù)范圍.【詳解】解:(1)證明:因為,當時,,,所以在區(qū)間遞減;當時,,所以,所以在區(qū)間遞增;且,所以函數(shù)的極小值點為1(2)函數(shù)在有兩個零點,即方程在區(qū)間有兩解,令,則令,則,所以在單調遞增,又,故存在唯一的,使得,即,所以在單調遞減,在區(qū)間單調遞增,且,又因為,所以,方程關于的方程在有兩個零點,由的圖象可知,,即.本題考查利用導數(shù)研究函數(shù)單調性,確定函數(shù)的極值,利用二次求導,零點存在性定理確定參數(shù)范圍,屬于難題.19.(1)或;(2)證明見解析【解析】
(1)將化簡,分類討論即可;(2)由(1)得,,展開后再利用基本不等式即可.【詳解】(1)當時,,所以或或解得或,因此不等式的解集的或(2)根據(jù),當且僅當時,等式成立.本題考查絕對值不等式的解法、利用基本不等式證明不等式問題,考查學生基本的計算能力,是一道基礎題.20.(1)證明見解析(2)【解析】
(1)先證明EF平面,即可求證;(2)根據(jù)二面角的余弦值,可得平面,以為坐標原點,建立空間直角坐標系,利用向量計算線面角即可.【詳解】(1)連接,交于點,連結.則,故面.又面,因此.(2)由(1)知即為二面角的平面角,且.在中應用余弦定理,得,于是有,即,從而有平面.以為坐標原點,建立如圖所示的空間直角坐標系,則,于是,,設平面的法向量為,則,即,解得于是平面的一個法向量為.設直線與平面所成角為,因此.本題主要考查了線面垂直,線線垂直的證明,二面角,線面角的向量求法,屬于中檔題.21.(1)答案見解析(2)【解析】
(1)先對函數(shù)進行求導得,對分成和兩種情況討論,從而得到相應的單調區(qū)間;(2)對函數(shù)求導得,從而有,,,三個方程中利用得到.將不等式的左邊轉化成關于的函數(shù),再構造新函數(shù)利用導數(shù)研究函數(shù)的最小值,從而得到的取值范圍.【詳解】解:(1)由,,則,當時,則,故在上單調遞減;當時,令,所以在上單調遞減,在上單調遞增.綜上所述:當時,在上單調遞減;當時,在上單調遞減,在上單調遞增.(2)∵,,由得,∴,,∴∵∴解得.∴.設,則,∴在上單調遞減;當時,.∴,即所求的取值范圍為.本題考查利用導數(shù)研究函數(shù)的單調性、最值,考查分類討論思想和數(shù)形結合思想,求解雙元問題的常用思路是:通過換元或消元,將雙元問題轉化為單元問題,然后利用導數(shù)研究單變量函數(shù)的性質.22.(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 瑜伽館免責合同范例
- 北京購買公寓合同范例
- 童星經(jīng)紀合同范例
- 家具委托加工合同范例
- 單位電器采購合同范例
- 2024年國際外貿居間合同標準文本3篇
- 廣告門頭銷售合同范例
- 日化品購銷合同范例
- led使用合同范例
- 黃瓜種植回收合同范例
- 浙江標準農貿市場建設與管理規(guī)范
- 快速誘導插管指南課件
- 托盤演示教學課件
- 中華農耕文化及現(xiàn)實意義
- DB32T 4353-2022 房屋建筑和市政基礎設施工程檔案資料管理規(guī)程
- 農產品品牌與營銷課件
- 加快中高職銜接,促進職業(yè)教育協(xié)調發(fā)展(201507)課件
- 車輛二級維護檢測單參考模板范本
- 亮化照明維護服務方案
- 疼痛評估方法與管理
- 測定總固體原始記錄
評論
0/150
提交評論