版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第06講向量法求空間角(含探索性問題)(精講)目錄第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第二部分:課前自我評(píng)估測(cè)試第三部分:典型例題剖析題型一:異面直線所成的角題型二:直線與平面所成的角角度1:求直線與平面所成角(定值問題)角度2:求直線與平面所成角(最值問題)角度3:已知線面角求其他參數(shù)(探索性問題)題型三:二面角角度1:求平面與平面所成角(定值問題)角度2:求平面與平面所成角(最值問題)角度3:已知二面角求其他參數(shù)(探索性問題)第四部分:高考真題感悟第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶知識(shí)點(diǎn)一:異面直線所成角設(shè)異面直線SKIPIF1<0和SKIPIF1<0所成角為SKIPIF1<0,其方向向量分別為SKIPIF1<0,SKIPIF1<0;則異面直線所成角向量求法:①SKIPIF1<0②SKIPIF1<0知識(shí)點(diǎn)二:直線和平面所成角設(shè)直線SKIPIF1<0的方向向量為SKIPIF1<0,平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,直線SKIPIF1<0與平面SKIPIF1<0所成的角為SKIPIF1<0,則①SKIPIF1<0;②SKIPIF1<0.知識(shí)點(diǎn)三:平面與平面所成角(二面角)(1)如圖①,SKIPIF1<0,SKIPIF1<0是二面角SKIPIF1<0的兩個(gè)面內(nèi)與棱SKIPIF1<0垂直的直線,則二面角的大小SKIPIF1<0.(2)如圖②③,SKIPIF1<0,SKIPIF1<0分別是二面角SKIPIF1<0的兩個(gè)半平面SKIPIF1<0的法向量,則二面角的大小SKIPIF1<0滿足:①SKIPIF1<0;②SKIPIF1<0若二面角為銳二面角(取正),則SKIPIF1<0;若二面角為頓二面角(取負(fù)),則SKIPIF1<0;(特別說明,有些題目會(huì)提醒求銳二面角;有些題目沒有明顯提示,需考生自己看圖判定為銳二面角還是鈍二面角.)第二部分:課前自我評(píng)估測(cè)試第二部分:課前自我評(píng)估測(cè)試1.(2022·廣西南寧·一模(理))在正方體SKIPIF1<0中O為面SKIPIF1<0的中心,SKIPIF1<0為面SKIPIF1<0的中心.若E為SKIPIF1<0中點(diǎn),則異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·全國(guó)·高三專題練習(xí))在三棱錐SKIPIF1<0中,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是棱SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0,則直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·全國(guó)·高二)點(diǎn)A,B分別在空間直角坐標(biāo)系O-xyz的x,y正半軸上,點(diǎn)C(0,0,2),平面ABC的法向量為SKIPIF1<0,設(shè)二面角C—AB—O的大小為θ,則cosθ的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·全國(guó)·高三專題練習(xí))在三棱錐SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,點(diǎn)M,N分別為SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0,Q為線段SKIPIF1<0上的點(diǎn)(不包括端點(diǎn)A,B),若使異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0或4 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·全國(guó)·高二)在三棱錐SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0兩兩垂直,SKIPIF1<0為棱SKIPIF1<0上一動(dòng)點(diǎn),SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0與平面SKIPIF1<0所成角最大時(shí),SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0第三部分:典型例題剖析第三部分:典型例題剖析題型一:異面直線所成的角典型例題例題1.(2022·江蘇泰州·高二期末)在平行六面體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0所成角的正弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例題2.(2022·安徽·高二期末)直角梯形SKIPIF1<0中,SKIPIF1<0是邊SKIPIF1<0的中點(diǎn),將三角形SKIPIF1<0沿SKIPIF1<0折疊到SKIPIF1<0位置,使得二面角SKIPIF1<0的大小為SKIPIF1<0,則異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例題3.(2022·廣西·高三階段練習(xí)(文))某圓錐的正視圖如圖所示,SKIPIF1<0為該圓錐的頂點(diǎn),SKIPIF1<0分別是圓錐底面和側(cè)面上兩定點(diǎn),SKIPIF1<0為其底面上動(dòng)點(diǎn).SKIPIF1<0四點(diǎn)在其正視圖中分別對(duì)應(yīng)點(diǎn)SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則異面直線SKIPIF1<0與SKIPIF1<0所成角最大時(shí),SKIPIF1<0的長(zhǎng)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例題4.(2022·吉林長(zhǎng)春·模擬預(yù)測(cè)(理))現(xiàn)有四棱錐SKIPIF1<0(如圖),底面SKIPIF1<0是矩形,SKIPIF1<0平面SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0分別在棱SKIPIF1<0,SKIPIF1<0上.當(dāng)空間四邊形SKIPIF1<0的周長(zhǎng)最小時(shí),異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為___________.題型歸類練1.(2022·河南安陽·高一階段練習(xí))已知在四棱柱SKIPIF1<0中,底面SKIPIF1<0為正方形,側(cè)棱SKIPIF1<0底面SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是線段SKIPIF1<0的中點(diǎn),SKIPIF1<0,則異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·遼寧丹東·模擬預(yù)測(cè))在三棱錐SKIPIF1<0中,SKIPIF1<0平面ABC,SKIPIF1<0,SKIPIF1<0是正三角形,M,N分別是AB,PC的中點(diǎn),則直線MN,PB所成角的余弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·黑龍江·大慶實(shí)驗(yàn)中學(xué)模擬預(yù)測(cè))在《九章算術(shù)》中,將四個(gè)面都是直角三角形的四面體稱為鱉臑,在鱉臑SKIPIF1<0中,SKIPIF1<0平面BCD,SKIPIF1<0,且SKIPIF1<0,M為AD的中點(diǎn),則異面直線BM與CD夾角的余弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·重慶八中模擬預(yù)測(cè))如圖所示,SKIPIF1<0是棱長(zhǎng)為SKIPIF1<0的正方體,SKIPIF1<0、SKIPIF1<0分別是下底面的棱SKIPIF1<0、SKIPIF1<0的中點(diǎn),SKIPIF1<0是上底面的棱SKIPIF1<0上的一點(diǎn),SKIPIF1<0,過SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的平面交上底面于SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上,則異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為___________.5.(2022·陜西·長(zhǎng)安一中高二期末(理))空間四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0所成角的余弦值等于___________.6.(2022·山西太原·一模(理))已知在三棱錐SKIPIF1<0中,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若三棱錐的外接球體積為SKIPIF1<0,則異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為__________.題型二:直線與平面所成的角角度1:求直線與平面所成角(定值問題)典型例題例題1.(2022·江蘇·南京師大附中高二期末)已知正方體SKIPIF1<0的棱長(zhǎng)為4,SKIPIF1<0在棱SKIPIF1<0上,且SKIPIF1<01,則直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為___________.例題2.(2022·全國(guó)·高三專題練習(xí))如圖,在正方體SKIPIF1<0中,SKIPIF1<0分別為棱SKIPIF1<0,SKIPIF1<0的中點(diǎn),則SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為___________.例題3.(2022·江蘇省阜寧中學(xué)高二期中)已知SKIPIF1<0是圓柱底面圓的一條直徑,SKIPIF1<0是圓柱的一條母線,SKIPIF1<0為底面圓上一點(diǎn),且SKIPIF1<0,SKIPIF1<0,則直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為________.例題4.(2022·全國(guó)·高三專題練習(xí))在三棱錐SKIPIF1<0中,SKIPIF1<0?SKIPIF1<0?SKIPIF1<0兩兩垂直,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中點(diǎn),則SKIPIF1<0與平面SKIPIF1<0所成的角的正切值為___________.題型歸類練1.(2022·全國(guó)·高三專題練習(xí))在正方體ABCD-A1B1C1D1中,E是對(duì)角線BD1上的點(diǎn),且BE∶ED1=1∶3,則AE與平面BCC1B1所成的角的正弦值是___________.2.(2022·全國(guó)·高二單元測(cè)試)在菱形ABCD中,SKIPIF1<0,將SKIPIF1<0沿BD折疊,使平面ABD⊥平面BCD,則AD與平面ABC所成角的正弦值為___________.3.(2022·海南·模擬預(yù)測(cè))在空間直角坐標(biāo)系Oxyz中,已知點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若平面SKIPIF1<0軸,且SKIPIF1<0,則直線SKIPIF1<0與平面SKIPIF1<0所成的角的正弦值為___________.4.(2022·全國(guó)·高三專題練習(xí))如圖,SKIPIF1<0和SKIPIF1<0所在平面垂直,且SKIPIF1<0,SKIPIF1<0,則直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為___________.角度2:求直線與平面所成角(最值問題)典型例題例題1.(2022·福建南平·高一期末)如圖,正方體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)直線SKIPIF1<0與平面SKIPIF1<0所成的角最大時(shí),SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例題2.(2022·浙江·慈溪市三山高級(jí)中學(xué)高二學(xué)業(yè)考試)在三棱錐SKIPIF1<0中,所有棱的長(zhǎng)均為SKIPIF1<0,點(diǎn)SKIPIF1<0在棱SKIPIF1<0上,滿足SKIPIF1<0,點(diǎn)SKIPIF1<0在棱SKIPIF1<0上運(yùn)動(dòng),設(shè)直線SKIPIF1<0與平面SKIPIF1<0所成角為SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例題3.(2022·湖南·長(zhǎng)沙一中高三開學(xué)考試)如圖,在直三棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別為線段SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0為線段SKIPIF1<0上的動(dòng)點(diǎn),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.試確定動(dòng)點(diǎn)SKIPIF1<0的位置,使線段SKIPIF1<0與平面SKIPIF1<0所成角的正弦值最大.例題4.(2022·湖南·模擬預(yù)測(cè))已知,如圖四棱錐SKIPIF1<0中,底面SKIPIF1<0為菱形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0中點(diǎn),點(diǎn)SKIPIF1<0是棱SKIPIF1<0上的動(dòng)點(diǎn).(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)請(qǐng)確定SKIPIF1<0點(diǎn)的位置,使得直線SKIPIF1<0與平面SKIPIF1<0所成的角取最大值.題型歸類練1.(2022·浙江·效實(shí)中學(xué)模擬預(yù)測(cè))已知圓錐SKIPIF1<0的高SKIPIF1<0是底面上圓SKIPIF1<0的直徑,SKIPIF1<0,SKIPIF1<0是圓SKIPIF1<0上的動(dòng)點(diǎn),SKIPIF1<0是SKIPIF1<0的中點(diǎn),則直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.12.(2022·安徽·高二開學(xué)考試)已知正方體SKIPIF1<0的棱長(zhǎng)為3,點(diǎn)E在上底面SKIPIF1<0內(nèi)(不包含邊界),若SKIPIF1<0,則AE與平面SKIPIF1<0所成角的正弦值的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2022·全國(guó)·高三專題練習(xí))如圖,在棱長(zhǎng)為3的正方體SKIPIF1<0中,點(diǎn)SKIPIF1<0是平面SKIPIF1<0內(nèi)一動(dòng)點(diǎn),且滿足SKIPIF1<0,則直線SKIPIF1<0與直線SKIPIF1<0所成角的余弦值的最大值為_______4.(2022·江蘇淮安·高二期末)已知四棱錐SKIPIF1<0的底面為正方形,側(cè)面PAD為等腰直角三角形,SKIPIF1<0,平面SKIPIF1<0平面ABCD,平面SKIPIF1<0平面SKIPIF1<0.(1)求證:SKIPIF1<0平面PAD;(2)設(shè)M為l上一點(diǎn),求PC與平面MAD所成角正弦值的最小值.5.(2022·重慶八中模擬預(yù)測(cè))如圖,在直三棱柱SKIPIF1<0中,SKIPIF1<0,M為SKIPIF1<0的中點(diǎn).(1)若SKIPIF1<0,證明:SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0是正三角形,P為線段SKIPIF1<0上的動(dòng)點(diǎn),求SKIPIF1<0與平面SKIPIF1<0所成角的正弦值的取值范圍.角度3:已知線面角求其他參數(shù)(探索性問題)典型例題例題1.(2022·湖南·模擬預(yù)測(cè))如圖,在直三棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0為棱SKIPIF1<0的中點(diǎn),點(diǎn)SKIPIF1<0為線段SKIPIF1<0上的一動(dòng)點(diǎn).(1)求證:當(dāng)點(diǎn)SKIPIF1<0為線段SKIPIF1<0的中點(diǎn)時(shí),SKIPIF1<0平面SKIPIF1<0;(2)當(dāng)點(diǎn)SKIPIF1<0位于線段SKIPIF1<0的什么位置時(shí),SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0,請(qǐng)說明理由.例題2.(2022·江蘇·泰興市第一高級(jí)中學(xué)高二階段練習(xí))如圖,已知三棱柱SKIPIF1<0中,側(cè)棱與底面垂直,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分別是SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的中點(diǎn).(1)求平面SKIPIF1<0與平面SKIPIF1<0夾角的余弦值;(2)點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,若直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0時(shí),求線段SKIPIF1<0的長(zhǎng).例題3.(2022·江蘇蘇州·高一期末)如圖,四棱錐SKIPIF1<0中,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0與底而所成的角為SKIPIF1<0,底面SKIPIF1<0為直角梯形,SKIPIF1<0(1)求證:平面SKIPIF1<0平面SKIPIF1<0:(2)在線段SKIPIF1<0上是否存在點(diǎn)SKIPIF1<0,使SKIPIF1<0與平面SKIPIF1<0所成的角為SKIPIF1<0?若存在,求出有SKIPIF1<0的值:若不存在,說明理由.題型歸類練1.(2022·陜西省安康中學(xué)高二期末(理))已知梯形SKIPIF1<0如圖甲所示,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,四邊形SKIPIF1<0是邊長(zhǎng)為1的正方形,沿SKIPIF1<0將四邊形SKIPIF1<0折起,使得平面SKIPIF1<0平面SKIPIF1<0,得到如圖乙所示的幾何體.(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)若點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,且SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0,求線段SKIPIF1<0的長(zhǎng)度.2.(2022·浙江·湖州市菱湖中學(xué)模擬預(yù)測(cè))如圖,三棱柱SKIPIF1<0所有的棱長(zhǎng)為2,SKIPIF1<0,M是棱BC的中點(diǎn).(Ⅰ)求證:SKIPIF1<0平面ABC;(Ⅱ)在線段B1C是否存在一點(diǎn)P,使直線BP與平面A1BC所成角的正弦值為SKIPIF1<0?若存在,求出CP的值;若不存在,請(qǐng)說明理由.3.(2022·湖南·長(zhǎng)郡中學(xué)高一期末)如圖所示的幾何體中,PD垂直于梯形ABCD所在的平面SKIPIF1<0,F(xiàn)為PA的中點(diǎn),SKIPIF1<0,SKIPIF1<0,四邊形PDCE為矩形,線段PC交DE于點(diǎn)N.(1)求證:SKIPIF1<0平面DEF;(2)在線段EF上是否存在一點(diǎn)Q,使得BQ與平面BCP所成角的大小為SKIPIF1<0?若存在,求出FQ的長(zhǎng);若不存在,請(qǐng)說明理由.4.(2022·廣東廣州·高二期末)如圖,四棱錐SKIPIF1<0的底面為矩形,SKIPIF1<0底面ABCD.過AD的平面SKIPIF1<0分別與線段SKIPIF1<0相交于點(diǎn)E,F(xiàn).(1)證明:SKIPIF1<0;(2)若SKIPIF1<0,試問是否存在平面SKIPIF1<0,使得直線PB與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0?若存在,求出此時(shí)BE的長(zhǎng);若不存在,請(qǐng)說明理由.5.(2022·江蘇泰州·高二期末)如圖,在正四棱錐P-ABCD中,AC,BD交于點(diǎn)O,SKIPIF1<0,SKIPIF1<0.(1)求二面角SKIPIF1<0的大?。?2)在線段AD上是否存在一點(diǎn)Q,使得PQ與平面APB所成角的正弦值為SKIPIF1<0?若存在,指出點(diǎn)Q的位置;若不存在,說明理由.題型三:二面角角度1:求平面與平面所成角(定值問題)典型例題例題1.(2022·廣東·興寧市第一中學(xué)高一階段練習(xí))若在正方體SKIPIF1<0中,點(diǎn)E是SKIPIF1<0的中點(diǎn),則二面角SKIPIF1<0的平面角的正切值為(
).A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0例題2.(2022·全國(guó)·高三專題練習(xí))在正方體SKIPIF1<0中,點(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn),則平面SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例題3.(2022·全國(guó)·高三專題練習(xí))《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早一千多年,書中將四個(gè)面均為直角三角形的四面體稱為鱉臑.如圖,四面體SKIPIF1<0為鱉臑,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則二面角SKIPIF1<0的正弦值為______.題型歸類練1.(2022·江蘇·高二課時(shí)練習(xí))在四棱錐SKIPIF1<0中,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0是矩形,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則平面SKIPIF1<0與平面SKIPIF1<0的夾角為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·重慶長(zhǎng)壽·高二期末)《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早一千多年,書中將四個(gè)面均為直角三角形的四面體稱為鱉臑.如下圖,四面體P-ABC為鱉臑,PA⊥平面ABC,AB⊥BC,且SKIPIF1<0,則二面角A-PC-B的余弦值為__________.3.(2022·全國(guó)·高二單元測(cè)試)在長(zhǎng)方體SKIPIF1<0中,AB=2,AD=1,SKIPIF1<0,點(diǎn)E為SKIPIF1<0的中點(diǎn),則二面角SKIPIF1<0的余弦值為______.角度2:求平面與平面所成角(定值探索性問題)典型例題例題1.(2022·河南·信陽高中高二期末(理))如圖1,在等邊SKIPIF1<0中,點(diǎn)SKIPIF1<0,SKIPIF1<0分別為邊SKIPIF1<0,SKIPIF1<0上的動(dòng)點(diǎn)且滿足SKIPIF1<0,記SKIPIF1<0.將SKIPIF1<0沿SKIPIF1<0翻折到SKIPIF1<0的位置并使得平面SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0得到圖2,點(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn).(1)當(dāng)SKIPIF1<0平面SKIPIF1<0時(shí),求SKIPIF1<0的值;(2)試探究:隨著SKIPIF1<0值的變化,二面角SKIPIF1<0的大小是否改變?如果改變,請(qǐng)說明理由;如果不改變,請(qǐng)求出二面角SKIPIF1<0的正弦值大?。}2.(2022·云南·彌勒市一中高二階段練習(xí))如圖,在四棱錐SKIPIF1<0中,SKIPIF1<0,底面SKIPIF1<0為直角梯形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為棱SKIPIF1<0上異于SKIPIF1<0,SKIPIF1<0的點(diǎn).(1)若SKIPIF1<0為棱SKIPIF1<0的中點(diǎn),求證:直線SKIPIF1<0平面SKIPIF1<0;(2)若存在點(diǎn)SKIPIF1<0為棱SKIPIF1<0上異于SKIPIF1<0,SKIPIF1<0的點(diǎn),使得直線SKIPIF1<0與SKIPIF1<0所成角的正弦值為SKIPIF1<0,求二面角SKIPIF1<0的余弦值.題型歸類練1.(2022·貴州黔西·高二期末(理))如圖,在四棱錐SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0都在平面SKIPIF1<0的上方.(1)證明:平面SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0,且平面CDE與平面ABE所成銳二面角的余弦值為SKIPIF1<0,求四棱錐SKIPIF1<0的體積.2.(2022·江蘇常州·高二期末)如圖,在三棱柱ABC-A1B1C1中,四邊形ABB1A1為正方形,四邊形AA1C1C為菱形,且∠AA1C=60°,平面AA1C1C⊥平面ABB1A1,點(diǎn)D為棱BB1的中點(diǎn).(1)求證:AA1⊥CD;(2)棱B1C1(除兩端點(diǎn)外)上是否存在點(diǎn)M,使得二面角B-A1M-B1的余弦值為SKIPIF1<0?若存在,請(qǐng)指出點(diǎn)M的位置;若不存在,請(qǐng)說明理由.3.(2022·福建·莆田一中高二期末)如圖,在三棱錐SKIPIF1<0中,SKIPIF1<0.(1)證明:平面SKIPIF1<0平面SKIPIF1<0.(2)若點(diǎn)Q在棱SKIPIF1<0上,且SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0,求二面角SKIPIF1<0的平面角的余弦值.4.(2022·海南中學(xué)高三階段練習(xí))如圖1,在平面四邊形PDCB中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.將SKIPIF1<0沿BA翻折到SKIPIF1<0的位置,使得平面SKIPIF1<0平面ABCD,如圖2所示.(1)設(shè)平面SDC與平面SAB的交線為l,求證:BC⊥l;(2)點(diǎn)Q在線段SC上(點(diǎn)Q不與端點(diǎn)重合),平面QBD與平面BCD夾角的余弦值為SKIPIF1<0,求線段BQ的長(zhǎng).角度3:已知二面角求其他參數(shù)(最值探索性問題)典型例題例題1.(2022·全國(guó)·高三專題練習(xí))長(zhǎng)方體SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在長(zhǎng)方體的側(cè)面SKIPIF1<0上運(yùn)動(dòng),SKIPIF1<0,則二面角SKIPIF1<0的平面角正切值的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例題2.(2022·江西·景德鎮(zhèn)一中高二期末(理))如圖,正三棱柱SKIPIF1<0的所有棱長(zhǎng)均為2,SKIPIF1<0為棱SKIPIF1<0不包括端點(diǎn)SKIPIF1<0上一動(dòng)點(diǎn),SKIPIF1<0是SKIPIF1<0的中點(diǎn).(1)若SKIPIF1<0,求SKIPIF1<0的長(zhǎng);(2)當(dāng)SKIPIF1<0在棱SKIPIF1<0不包括端點(diǎn)SKIPIF1<0上運(yùn)動(dòng)時(shí),求平面SKIPIF1<0與平面SKIPIF1<0的夾角的余弦值的最大值.題型歸類練1.(2022·重慶市長(zhǎng)壽中學(xué)校高一階段練習(xí))如圖,在三棱錐SKIPIF1<0中,SKIPIF1<0是等邊三角形,點(diǎn)A在平面SKIPIF1<0上的投影是線段BC的中點(diǎn)E,AB=AD=AC,點(diǎn)SKIPIF1<0是SKIPIF1<0的中點(diǎn).(1)證明:平面SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0BC=2BD,點(diǎn)SKIPIF1<0是線段SKIPIF1<0上的動(dòng)點(diǎn),問:點(diǎn)SKIPIF1<0運(yùn)動(dòng)到何處時(shí),平面SKIPIF1<0與平面SKIPIF1<0所成的銳二面角最小.2.(2022·山西運(yùn)城·模擬預(yù)測(cè)(理))如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的外心,SKIPIF1<0平面SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外貿(mào)出口購銷合同范例
- 房屋裝修責(zé)任合同范例
- 拆遷活動(dòng)板房合同模板
- 房子裝修安全合同模板
- 境外股權(quán)收購合同模板簡(jiǎn)易
- 承包外包服務(wù)合同范例
- 學(xué)校建筑樓房合同范例
- 加工項(xiàng)目轉(zhuǎn)讓合同范例
- 房產(chǎn)代理合同范例
- 房屋補(bǔ)貼合同范例
- 重度子癇前期、胎盤早剝急救演練
- 老年社區(qū)獲得性肺炎的幾個(gè)熱點(diǎn)問題專家講座
- 建筑消防工程施工操作規(guī)程
- 大學(xué)生職業(yè)規(guī)劃4篇匯編
- GB/T 42461-2023信息安全技術(shù)網(wǎng)絡(luò)安全服務(wù)成本度量指南
- (完整word版)扣字詞匯124
- 2023屆廣東省廣州市高三一模語文現(xiàn)代文閱讀小說《給我一枝槍》講評(píng)課件
- 中職世界歷史全一冊(cè)教案
- 毛栗煤礦 礦業(yè)權(quán)價(jià)款計(jì)算結(jié)果的報(bào)告
- Q-CR 783.1-2021 鐵路通信網(wǎng)絡(luò)安全技術(shù)要求 第1部分:總體技術(shù)要求
- 2023年黑龍江建筑職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析
評(píng)論
0/150
提交評(píng)論