四川成都實驗高級中學2025年高三下學期第三次質檢考試數(shù)學試題含解析_第1頁
四川成都實驗高級中學2025年高三下學期第三次質檢考試數(shù)學試題含解析_第2頁
四川成都實驗高級中學2025年高三下學期第三次質檢考試數(shù)學試題含解析_第3頁
四川成都實驗高級中學2025年高三下學期第三次質檢考試數(shù)學試題含解析_第4頁
四川成都實驗高級中學2025年高三下學期第三次質檢考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川成都實驗高級中學2025年高三下學期第三次質檢考試數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如圖所示,則該幾何體中的最長棱長為()A. B. C. D.2.已知的共軛復數(shù)是,且(為虛數(shù)單位),則復數(shù)在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對于恒成立,則的取值范圍是A. B. C. D.4.已知函數(shù),關于的方程R)有四個相異的實數(shù)根,則的取值范圍是(

)A. B. C. D.5.已知向量,且,則等于()A.4 B.3 C.2 D.16.已知函數(shù),若則()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)7.將函數(shù)圖象上每一點的橫坐標變?yōu)樵瓉淼?倍,再將圖像向左平移個單位長度,得到函數(shù)的圖象,則函數(shù)圖象的一個對稱中心為()A. B. C. D.8.為虛數(shù)單位,則的虛部為()A. B. C. D.9.已知直四棱柱的所有棱長相等,,則直線與平面所成角的正切值等于()A. B. C. D.10.等差數(shù)列的前項和為,若,,則數(shù)列的公差為()A.-2 B.2 C.4 D.711.在空間直角坐標系中,四面體各頂點坐標分別為:.假設螞蟻窩在點,一只螞蟻從點出發(fā),需要在,上分別任意選擇一點留下信息,然后再返回點.那么完成這個工作所需要走的最短路徑長度是()A. B. C. D.12.已知集合,則全集則下列結論正確的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設為互不相等的正實數(shù),隨機變量和的分布列如下表,若記,分別為的方差,則_____.(填>,<,=)14.在的二項展開式中,所有項的系數(shù)的和為________15.已知集合,.若,則實數(shù)a的值是______.16.已知f(x)為偶函數(shù),當x≤0時,f(x)=e-x-1-x,則曲線y=f(x)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù),其中.(Ⅰ)當為偶函數(shù)時,求函數(shù)的極值;(Ⅱ)若函數(shù)在區(qū)間上有兩個零點,求的取值范圍.18.(12分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點,與平面所成的角的正弦值為,求的長.19.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,圓的極坐標方程為.(1)求直線和圓的普通方程;(2)已知直線上一點,若直線與圓交于不同兩點,求的取值范圍.20.(12分)某工廠,兩條相互獨立的生產線生產同款產品,在產量一樣的情況下通過日常監(jiān)控得知,生產線生產的產品為合格品的概率分別為和.(1)從,生產線上各抽檢一件產品,若使得至少有一件合格的概率不低于,求的最小值.(2)假設不合格的產品均可進行返工修復為合格品,以(1)中確定的作為的值.①已知,生產線的不合格產品返工后每件產品可分別挽回損失元和元.若從兩條生產線上各隨機抽檢件產品,以挽回損失的平均數(shù)為判斷依據(jù),估計哪條生產線挽回的損失較多?②若最終的合格品(包括返工修復后的合格品)按照一、二、三等級分類后,每件分別獲利元、元、元,現(xiàn)從,生產線的最終合格品中各隨機抽取件進行檢測,結果統(tǒng)計如下圖;用樣本的頻率分布估計總體分布,記該工廠生產一件產品的利潤為,求的分布列并估算該廠產量件時利潤的期望值.21.(12分)已知的內角,,的對邊分別為,,,且.(1)求;(2)若的面積為,,求的周長.22.(10分)在直角坐標系xOy中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系;曲線C1的普通方程為(x-1)2+y2=1,曲線C2的參數(shù)方程為(θ為參數(shù)).(Ⅰ)求曲線C1和C2的極坐標方程:(Ⅱ)設射線θ=(ρ>0)分別與曲線C1和C2相交于A,B兩點,求|AB|的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

根據(jù)三視圖,可得該幾何體是一個三棱錐,并且平面SAC平面ABC,,過S作,連接BD,,再求得其它的棱長比較下結論.【詳解】如圖所示:由三視圖得:該幾何體是一個三棱錐,且平面SAC平面ABC,,過S作,連接BD,則,所以,,,,該幾何體中的最長棱長為.故選:C本題主要考查三視圖還原幾何體,還考查了空間想象和運算求解的能力,屬于中檔題.2.D【解析】

設,整理得到方程組,解方程組即可解決問題.【詳解】設,因為,所以,所以,解得:,所以復數(shù)在復平面內對應的點為,此點位于第四象限.故選D本題主要考查了復數(shù)相等、復數(shù)表示的點知識,考查了方程思想,屬于基礎題.3.A【解析】

根據(jù)奇偶性定義和性質可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結果.【詳解】為定義在上的偶函數(shù),圖象關于軸對稱又在上是增函數(shù)在上是減函數(shù),即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:本題考查利用函數(shù)的奇偶性和單調性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關鍵是能夠利用函數(shù)單調性將函數(shù)值的大小關系轉化為自變量的大小關系,從而利用分離變量法來處理恒成立問題.4.A【解析】=,當時時,單調遞減,時,單調遞增,且當,當,

當時,恒成立,時,單調遞增且,方程R)有四個相異的實數(shù)根.令=則,,即.5.D【解析】

由已知結合向量垂直的坐標表示即可求解.【詳解】因為,且,,則.故選:.本題主要考查了向量垂直的坐標表示,意在考查學生對這些知識的理解掌握水平,屬于基礎題.6.C【解析】

利用導數(shù)求得在上遞增,結合與圖象,判斷出的大小關系,由此比較出的大小關系.【詳解】因為,所以在上單調遞增;在同一坐標系中作與圖象,,可得,故.故選:C本小題主要考查利用導數(shù)研究函數(shù)的單調性,考查利用函數(shù)的單調性比較大小,考查數(shù)形結合的數(shù)學思想方法,屬于中檔題.7.D【解析】

根據(jù)函數(shù)圖象的變換規(guī)律可得到解析式,然后將四個選項代入逐一判斷即可.【詳解】解:圖象上每一點的橫坐標變?yōu)樵瓉淼?倍,得到再將圖像向左平移個單位長度,得到函數(shù)的圖象,故選:D考查三角函數(shù)圖象的變換規(guī)律以及其有關性質,基礎題.8.C【解析】

利用復數(shù)的運算法則計算即可.【詳解】,故虛部為.故選:C.本題考查復數(shù)的運算以及復數(shù)的概念,注意復數(shù)的虛部為,不是,本題為基礎題,也是易錯題.9.D【解析】

以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.求解平面的法向量,利用線面角的向量公式即得解.【詳解】如圖所示的直四棱柱,,取中點,以為坐標原點,所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標系.設,則,.設平面的法向量為,則取,得.設直線與平面所成角為,則,,∴直線與平面所成角的正切值等于故選:D本題考查了向量法求解線面角,考查了學生空間想象,邏輯推理,數(shù)學運算的能力,屬于中檔題.10.B【解析】

在等差數(shù)列中由等差數(shù)列公式與下標和的性質求得,再由等差數(shù)列通項公式求得公差.【詳解】在等差數(shù)列的前項和為,則則故選:B本題考查等差數(shù)列中求由已知關系求公差,屬于基礎題.11.C【解析】

將四面體沿著劈開,展開后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開,展開后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C本題考查了余弦定理解三角形,需熟記定理的內容,考查了學生的空間想象能力,屬于中檔題.12.D【解析】

化簡集合,根據(jù)對數(shù)函數(shù)的性質,化簡集合,按照集合交集、并集、補集定義,逐項判斷,即可求出結論.【詳解】由,則,故,由知,,因此,,,,故選:D本題考查集合運算以及集合間的關系,求解不等式是解題的關鍵,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.>【解析】

根據(jù)方差計算公式,計算出的表達式,由此利用差比較法,比較出兩者的大小關系.【詳解】,故.,.要比較的大小,只需比較與,兩者作差并化簡得①,由于為互不相等的正實數(shù),故,也即,也即.故答案為:本小題主要考查隨機變量期望和方差的計算,考查差比較法比較大小,考查運算求解能力,屬于難題.14.1【解析】

設,令,的值即為所有項的系數(shù)之和?!驹斀狻吭O,令,所有項的系數(shù)的和為。本題主要考查二項式展開式所有項的系數(shù)的和的求法─賦值法。一般地,對于,展開式各項系數(shù)之和為,注意與“二項式系數(shù)之和”區(qū)分。15.9【解析】

根據(jù)集合交集的定義即得.【詳解】集合,,,,則a的值是9.故答案為:9本題考查集合的交集,是基礎題.16.y=2x【解析】試題分析:當x>0時,-x<0,則f(-x)=ex-1+x.又因為f(x)為偶函數(shù),所以f(x)=f(-x)=ex-1+x,所以f'【考點】函數(shù)的奇偶性、解析式及導數(shù)的幾何意義【知識拓展】本題題型可歸納為“已知當x>0時,函數(shù)y=f(x),則當x<0時,求函數(shù)的解析式”.有如下結論:若函數(shù)f(x)為偶函數(shù),則當x<0時,函數(shù)的解析式為y=-f(x);若f(x)為奇函數(shù),則函數(shù)的解析式為y=-f(-x).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)極小值,極大值;(Ⅱ)或【解析】

(Ⅰ)根據(jù)偶函數(shù)定義列方程,解得.再求導數(shù),根據(jù)導函數(shù)零點列表分析導函數(shù)符號變化規(guī)律,即得極值,(Ⅱ)先分離變量,轉化研究函數(shù),,利用導數(shù)研究單調性與圖象,最后根據(jù)圖象確定滿足條件的的取值范圍.【詳解】(Ⅰ)由函數(shù)是偶函數(shù),得,即對于任意實數(shù)都成立,所以.此時,則.由,解得.當x變化時,與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調遞減,在上單調遞增.所以有極小值,有極大值.(Ⅱ)由,得.所以“在區(qū)間上有兩個零點”等價于“直線與曲線,有且只有兩個公共點”.對函數(shù)求導,得.由,解得,.當x變化時,與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調遞減,在上單調遞增.又因為,,,,所以當或時,直線與曲線,有且只有兩個公共點.即當或時,函數(shù)在區(qū)間上有兩個零點.利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)利用零點存在的判定定理構建不等式求解.(2)分離參數(shù)后轉化為函數(shù)的值域(最值)問題求解.(3)轉化為兩熟悉的函數(shù)圖象的上、下關系問題,從而構建不等式求解.18.(Ⅰ)見解析;(Ⅱ)【解析】

(Ⅰ)取的中點,連接,由,,得三點共線,且,又,再利用線面垂直的判定定理證明.(Ⅱ)設,則,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加求得,再過作,則平面,即點到平面的距離,由是中點,得到到平面的距離,然后根據(jù)與平面所成的角的正弦值為求解.【詳解】(Ⅰ)取的中點,連接,由,,得三點共線,且,又,,所以平面,所以.(Ⅱ)設,,,在底面中,,在中,由余弦定理得:,在中,由余弦定理得,兩式相加得:,所以,,過作,則平面,即點到平面的距離,因為是中點,所以為到平面的距離,因為與平面所成的角的正弦值為,即,解得.本題主要考查線面垂直的判定定理,線面角的應用,還考查了轉化化歸的思想和空間想象運算求解的能力,屬于中檔題.19.(1),;(2)【解析】分析:(1)用代入法消參數(shù)可得直線的普通方程,由公式可化極坐標方程為直角坐標方程;(2)把直線的參數(shù)方程代入曲線的直角坐標方程,其中參數(shù)的絕對值表示直線上對應點到的距離,因此有,,直接由韋達定理可得,注意到直線與圓相交,因此判別式>0,這樣可得滿足的不等關系,由此可求得的取值范圍.詳解:(1)直線的參數(shù)方程為,普通方程為,將代入圓的極坐標方程中,可得圓的普通方程為,(2)解:直線的參數(shù)方程為代入圓的方程為可得:(*),且由題意,,.因為方程(*)有兩個不同的實根,所以,即,又,所以.因為,所以所以.點睛:(1)參數(shù)方程化為普通方程,一般用消參數(shù)法,而消參法有兩種選擇:一是代入法,二是用公式;(2)極坐標方程與直角坐標方程互化一般利用公式;(3)過的直線的參數(shù)方程為(為參數(shù))中參數(shù)具有幾何意義:直線上任一點對應參數(shù),則.20.(1)(2)①生產線上挽回的損失較多.②見解析【解析】

(1)由題意得到關于的不等式,求解不等式得到的取值范圍即可確定其最小值;(2)①.由題意利用二項分布的期望公式和數(shù)學期望的性質給出結論即可;②.由題意首先確定X可能的取值,然后求得相應的概率值可得分布列,最后由分布列可得利潤的期望值.【詳解】(1)設從,生產線上各抽檢一件產品,至少有一件合格為事件,設從,生產線上抽到合格品分別為事件,,則,互為獨立事件由已知有,則解得,則的最

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論