上海二中2024-2025學年高三第五次考試數(shù)學試題含解析_第1頁
上海二中2024-2025學年高三第五次考試數(shù)學試題含解析_第2頁
上海二中2024-2025學年高三第五次考試數(shù)學試題含解析_第3頁
上海二中2024-2025學年高三第五次考試數(shù)學試題含解析_第4頁
上海二中2024-2025學年高三第五次考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

上海二中2024-2025學年高三第五次考試數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列函數(shù)中,值域為的偶函數(shù)是()A. B. C. D.2.設、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.33.當時,函數(shù)的圖象大致是()A. B.C. D.4.已知集合,則全集則下列結論正確的是()A. B. C. D.5.《九章算術》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤;斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現(xiàn)在有一根金箠,長五尺在粗的一端截下一尺,重斤;在細的一端截下一尺,重斤,問各尺依次重多少?”按這一問題的顆設,假設金箠由粗到細各尺重量依次成等差數(shù)列,則從粗端開始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤6.已知函數(shù),的圖象與直線的兩個相鄰交點的距離等于,則的一條對稱軸是()A. B. C. D.7.設集合(為實數(shù)集),,,則()A. B. C. D.8.已知函數(shù)在上可導且恒成立,則下列不等式中一定成立的是()A.、B.、C.、D.、9.已知m,n為異面直線,m⊥平面α,n⊥平面β,直線l滿足l⊥m,l⊥n,則()A.α∥β且∥α B.α⊥β且⊥βC.α與β相交,且交線垂直于 D.α與β相交,且交線平行于10.劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學家,中國古典數(shù)學理論的奠基人之一他在割圓術中提出的,“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術的核心思想是將一個圓的內(nèi)接正n邊形等分成n個等腰三角形(如圖所示),當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術的思想,得到的近似值為()A. B. C. D.11.已知是虛數(shù)單位,則復數(shù)()A. B. C.2 D.12.執(zhí)行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.63二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在內(nèi)有兩個零點,則實數(shù)的取值范圍是________.14.如圖所示梯子結構的點數(shù)依次構成數(shù)列,則________.15.現(xiàn)有一塊邊長為a的正方形鐵片,鐵片的四角截去四個邊長均為x的小正方形,然后做成一個無蓋方盒,該方盒容積的最大值是________.16.的展開式中,的系數(shù)為_______(用數(shù)字作答).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數(shù).(1)求不等式的解集;(2)若的最小值為,且,求的最小值.18.(12分)在平面直角坐標系中,已知橢圓的短軸長為,直線與橢圓相交于兩點,線段的中點為.當與連線的斜率為時,直線的傾斜角為(1)求橢圓的標準方程;(2)若是以為直徑的圓上的任意一點,求證:19.(12分)以直角坐標系的原點為極坐標系的極點,軸的正半軸為極軸.已知曲線的極坐標方程為,是上一動點,,點的軌跡為.(1)求曲線的極坐標方程,并化為直角坐標方程;(2)若點,直線的參數(shù)方程(為參數(shù)),直線與曲線的交點為,當取最小值時,求直線的普通方程.20.(12分)已知直線:與拋物線切于點,直線:過定點Q,且拋物線上的點到點Q的距離與其到準線距離之和的最小值為.(1)求拋物線的方程及點的坐標;(2)設直線與拋物線交于(異于點P)兩個不同的點A、B,直線PA,PB的斜率分別為,那么是否存在實數(shù),使得?若存在,求出的值;若不存在,請說明理由.21.(12分)已知三棱柱中,,是的中點,,.(1)求證:;(2)若側面為正方形,求直線與平面所成角的正弦值.22.(10分)已知函數(shù)有兩個零點.(1)求的取值范圍;(2)是否存在實數(shù),對于符合題意的任意,當時均有?若存在,求出所有的值;若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點:1、函數(shù)的奇偶性;2、函數(shù)的值域.2.C【解析】

先根據(jù)奇偶性,求出的解析式,令,即可求出?!驹斀狻恳驗?、分別是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡得,即令,所以,故選C。本題主要考查函數(shù)性質奇偶性的應用。3.B【解析】由,解得,即或,函數(shù)有兩個零點,,不正確,設,則,由,解得或,由,解得:,即是函數(shù)的一個極大值點,不成立,排除,故選B.【方法點晴】本題通過對多個圖象的選擇考察函數(shù)的解析式、定義域、值域、單調(diào)性,導數(shù)的應用以及數(shù)學化歸思想,屬于難題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點以及時函數(shù)圖象的變化趨勢,利用排除法,將不合題意選項一一排除.4.D【解析】

化簡集合,根據(jù)對數(shù)函數(shù)的性質,化簡集合,按照集合交集、并集、補集定義,逐項判斷,即可求出結論.【詳解】由,則,故,由知,,因此,,,,故選:D本題考查集合運算以及集合間的關系,求解不等式是解題的關鍵,屬于基礎題.5.B【解析】

依題意,金箠由粗到細各尺重量構成一個等差數(shù)列,則,由此利用等差數(shù)列性質求出結果.【詳解】設金箠由粗到細各尺重量依次所成得等差數(shù)列為,設首項,則,公差,.故選B本題考查了等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于基礎題.6.D【解析】

由題,得,由的圖象與直線的兩個相鄰交點的距離等于,可得最小正周期,從而求得,得到函數(shù)的解析式,又因為當時,,由此即可得到本題答案.【詳解】由題,得,因為的圖象與直線的兩個相鄰交點的距離等于,所以函數(shù)的最小正周期,則,所以,當時,,所以是函數(shù)的一條對稱軸,故選:D本題主要考查利用和差公式恒等變形,以及考查三角函數(shù)的周期性和對稱性.7.A【解析】

根據(jù)集合交集與補集運算,即可求得.【詳解】集合,,所以所以故選:A本題考查了集合交集與補集的混合運算,屬于基礎題.8.A【解析】

設,利用導數(shù)和題設條件,得到,得出函數(shù)在R上單調(diào)遞增,得到,進而變形即可求解.【詳解】由題意,設,則,又由,所以,即函數(shù)在R上單調(diào)遞增,則,即,變形可得.故選:A.本題主要考查了利用導數(shù)研究函數(shù)的單調(diào)性及其應用,以及利用單調(diào)性比較大小,其中解答中根據(jù)題意合理構造新函數(shù),利用新函數(shù)的單調(diào)性求解是解答的關鍵,著重考查了構造思想,以及推理與計算能力,屬于中檔試題.9.D【解析】

試題分析:由平面,直線滿足,且,所以,又平面,,所以,由直線為異面直線,且平面平面,則與相交,否則,若則推出,與異面矛盾,所以相交,且交線平行于,故選D.考點:平面與平面的位置關系,平面的基本性質及其推論.10.A【解析】

設圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術可得圓的面積為,整理可得,當時即可為所求.【詳解】由割圓術可知當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,設圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當時,可得,故選:A本題考查三角形面積公式的應用,考查閱讀分析能力.11.A【解析】

根據(jù)復數(shù)的基本運算求解即可.【詳解】.故選:A本題主要考查了復數(shù)的基本運算,屬于基礎題.12.B【解析】

根據(jù)程序框圖中的循環(huán)結構的運算,直至滿足條件退出循環(huán)體,即可得出結果.【詳解】執(zhí)行程序框;;;;;,滿足,退出循環(huán),因此輸出,故選:B.本題考查循環(huán)結構輸出結果,模擬程序運行是解題的關鍵,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

設,,設,函數(shù)為奇函數(shù),,函數(shù)單調(diào)遞增,,畫出簡圖,如圖所示,根據(jù),解得答案.【詳解】,設,,則.原函數(shù)等價于函數(shù),即有兩個解.設,則,函數(shù)為奇函數(shù).,函數(shù)單調(diào)遞增,,,.當時,易知不成立;當時,根據(jù)對稱性,考慮時的情況,,畫出簡圖,如圖所示,根據(jù)圖像知:故,即,根據(jù)對稱性知:.故答案為:.本題考查了函數(shù)零點問題,意在考查學生的轉化能力和計算能力,畫出圖像是解題的關鍵.14.【解析】

根據(jù)圖像歸納,根據(jù)等差數(shù)列求和公式得到答案.【詳解】根據(jù)圖像:,,故,故.故答案為:.本題考查了等差數(shù)列的應用,意在考查學生的計算能力和應用能力.15.【解析】

由題意容積,求導研究單調(diào)性,分析即得解.【詳解】由題意:容積,,則,由得或(舍去),令則為V在定義域內(nèi)唯一的極大值點也是最大值點,此時.故答案為:本題考查了導數(shù)在實際問題中的應用,考查了學生數(shù)學建模,轉化劃歸,數(shù)學運算的能力,屬于中檔題.16.60【解析】

根據(jù)二項式定理展開式通項,即可求得的系數(shù).【詳解】因為,所以,則所求項的系數(shù)為.故答案為:60本題考查了二項展開式通項公式的應用,指定項系數(shù)的求法,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)或(2)最小值為.【解析】

(1)討論,,三種情況,分別計算得到答案.(2)計算得到,再利用均值不等式計算得到答案.【詳解】(1)當時,由,解得;當時,由,解得;當時,由,解得.所以所求不等式的解集為或.(2)根據(jù)函數(shù)圖像知:當時,,所以.因為,由,可知,所以,當且僅當,,時,等號成立.所以的最小值為.本題考查了解絕對值不等式,函數(shù)最值,均值不等式,意在考查學生對于不等式,函數(shù)知識的綜合應用.18.(1);(2)詳見解析.【解析】

(1)由短軸長可知,設,,由設而不求法作差即可求得,將相應值代入即求得,橢圓方程可求;(2)考慮特殊位置,即直線與軸垂直時候,成立,當直線斜率存在時,設出直線方程,與橢圓聯(lián)立,結合中點坐標公式,弦長公式,得到與的關系,將表示出來,結合基本不等式求最值,證明最后的結果【詳解】解:(1)由已知,得由,兩式相減,得根據(jù)已知條件有,當時,∴,即∴橢圓的標準方程為(2)當直線斜率不存在時,,不等式成立.當直線斜率存在時,設由得∴,∴由化簡,得∴令,則當且僅當時取等號∴∵∴當且僅當時取等號綜上,本題為直線與橢圓的綜合應用,考查了橢圓方程的求法,點差法處理多未知量問題,能夠利用一元二次方程的知識轉化處理復雜的計算形式,要求學生計算能力過關,為較難題19.(1),;(2).【解析】

(1)設點極坐標分別為,,由可得,整理即可得到極坐標方程,進而求得直角坐標方程;(2)設點對應的參數(shù)分別為,則,,將直線的參數(shù)方程代入的直角坐標方程中,再利用韋達定理可得,,則,求得取最小值時符合的條件,進而求得直線的普通方程.【詳解】(1)設點極坐標分別為,,因為,則,所以曲線的極坐標方程為,兩邊同乘,得,所以的直角坐標方程為,即.(2)設點對應的參數(shù)分別為,則,,將直線的參數(shù)方程(參數(shù)),代入的直角坐標方程中,整理得.由韋達定理得,,所以,當且僅當時,等號成立,則,所以當取得最小值時,直線的普通方程為.本題考查極坐標與直角坐標方程的轉化,考查利用直線的參數(shù)方程研究直線與圓的位置關系.20.(1),(1,2);(2)存在,【解析】

(1)由直線恒過點點及拋物線C上的點到點Q的距離與到準線的距離之和的最小值為,求出拋物線的方程,再由直線與拋物線相切,即可求得切點的坐標;(2)直線與拋物線方程聯(lián)立,利用根與系數(shù)的關系,求得直線PA,PB的斜率,求出斜率之和為定值,即存在實數(shù)使得斜率之和為定值.【詳解】(1)由題意,直線變?yōu)?x+1-m(2y+1)=0,所以定點Q的坐標為拋物線的焦點坐標,由拋物線C上的點到點Q的距離與到其焦點F的距離之和的最小值為,可得,解得或(舍去),故拋物線C的方程為又由消去y得,因為直線與拋物線C相切,所以,解得,此時,所以點P坐標為(1,2)(2)設存在滿足條件的實數(shù),點,聯(lián)立,消去x得,則,依題意,可得,解得m<-1或,由(1)知P(1,2),可得,同理可得,所以=,故存在實數(shù)=滿足條件.本題主要考查拋物線方程的求解、及直線與圓錐曲線的位置關系的綜合應用,解答此類題目,通常聯(lián)立直線方程與拋物線方程,應用一元二次方程根與系數(shù)的關系進行求解,此類問題易錯點是復雜式子的變形能力不足,導致錯解,能較好的考查考生的邏輯思維能力、運算求解能力、分析問題解決問題的能力等.21.(1)證明見解析(2)【解析】

(1)取的中點,連接,,證明平面得出,再得出;(2)建立空間坐標系,求出平面的法向量,計算,即可得出答案.【詳解】(1)證明:取的中點,連接,,,,,,,故,又,,平面,平面,,,分別是,的中點,,.(2)解:四邊形是正方形,,又,,平面,平面,在平面內(nèi)作直線的垂線,以為原點,以,,為所在直線為坐標軸建立空間直角坐標系,則,0,,,1,,,2,,,0,,,1,,,2,,,1,,設平面的法向量為,,,則,即,令可得:,,,,.直線與平面所成角的正弦值為,.本題主要考查了線面垂直的判定與性質,考查空間向量與空間角的計算,屬于中檔題.22.(1);(2).【解析】

(1)對求導,對參數(shù)進行分類討論,根據(jù)函數(shù)單調(diào)性即可求得.(2)先根據(jù),得,再根據(jù)零點解得,轉化不等式得,令,化簡得,因此,,最后根據(jù)導數(shù)研究對應函數(shù)單調(diào)性,確定對應函數(shù)最值,即得取值集合.【詳解】(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論