




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
專題12圓錐曲線壓軸小題常見題型全歸納【命題規(guī)律】1、圓錐曲線的定義、方程與幾何性質(zhì)是每年高考必考的內(nèi)容.一是求圓錐曲線的標(biāo)準(zhǔn)方程;二是求橢圓或雙曲線的離心率、與雙曲線的漸近線有關(guān)的問題;三是拋物線的性質(zhì)及應(yīng)用問題.多以選擇、填空題的形式考查,難度中等.2、通過對橢圓、雙曲線、拋物線的定義、方程及幾何性質(zhì)的考查,著重考查了數(shù)學(xué)抽象、數(shù)學(xué)建模、邏輯推理與數(shù)學(xué)運算四大核心素養(yǎng).【核心考點目錄】核心考點一:阿波羅尼斯圓與圓錐曲線核心考點二:蒙日圓核心考點三:阿基米德三角形核心考點四:仿射變換問題核心考點五:圓錐曲線第二定義核心考點六:焦半徑問題核心考點七:圓錐曲線第三定義核心考點八:定比點差法與點差法核心考點九:切線問題核心考點十:焦點三角形問題核心考點十一:焦點弦問題核心考點十二:圓錐曲線與張角問題核心考點十三:圓錐曲線與角平分線問題核心考點十四:圓錐曲線與通徑問題核心考點十五:圓錐曲線的光學(xué)性質(zhì)問題核心考點十六:圓錐曲線與四心問題【真題回歸】1.(2022·天津·統(tǒng)考高考真題)已知拋物線SKIPIF1<0分別是雙曲線SKIPIF1<0的左、右焦點,拋物線的準(zhǔn)線過雙曲線的左焦點SKIPIF1<0,與雙曲線的漸近線交于點A,若SKIPIF1<0,則雙曲線的標(biāo)準(zhǔn)方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2022·全國·統(tǒng)考高考真題)設(shè)F為拋物線SKIPIF1<0的焦點,點A在C上,點SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.2 B.SKIPIF1<0 C.3 D.SKIPIF1<03.(2022·全國·統(tǒng)考高考真題)已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,SKIPIF1<0分別為C的左、右頂點,B為C的上頂點.若SKIPIF1<0,則C的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(多選題)(2022·全國·統(tǒng)考高考真題)已知O為坐標(biāo)原點,點SKIPIF1<0在拋物線SKIPIF1<0上,過點SKIPIF1<0的直線交C于P,Q兩點,則(
)A.C的準(zhǔn)線為SKIPIF1<0 B.直線AB與C相切C.SKIPIF1<0 D.SKIPIF1<05.(多選題)(2022·全國·統(tǒng)考高考真題)已知O為坐標(biāo)原點,過拋物線SKIPIF1<0焦點F的直線與C交于A,B兩點,其中A在第一象限,點SKIPIF1<0,若SKIPIF1<0,則(
)A.直線SKIPIF1<0的斜率為SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<06.(2022·全國·統(tǒng)考高考真題)已知橢圓SKIPIF1<0,C的上頂點為A,兩個焦點為SKIPIF1<0,SKIPIF1<0,離心率為SKIPIF1<0.過SKIPIF1<0且垂直于SKIPIF1<0的直線與C交于D,E兩點,SKIPIF1<0,則SKIPIF1<0的周長是________________.7.(2022·全國·統(tǒng)考高考真題)設(shè)點SKIPIF1<0,若直線SKIPIF1<0關(guān)于SKIPIF1<0對稱的直線與圓SKIPIF1<0有公共點,則a的取值范圍是________.8.(2022·全國·統(tǒng)考高考真題)已知直線l與橢圓SKIPIF1<0在第一象限交于A,B兩點,l與x軸,y軸分別交于M,N兩點,且SKIPIF1<0,則l的方程為___________.【方法技巧與總結(jié)】1、在利用圓錐曲線的定義求軌跡方程時,若所求的軌跡符合某種圓錐曲線的定義,則根據(jù)定義判定軌跡曲線并寫出方程.有時還要注意軌跡是不是完整的曲線,如果不是完整的曲線,則應(yīng)對其中的變量SKIPIF1<0或SKIPIF1<0進(jìn)行限制.2、應(yīng)用圓錐曲線的定義時,要注意定義中的限制條件.在橢圓的定義中,要求SKIPIF1<0;在雙曲線的定義中,要求SKIPIF1<0SKIPIF1<0;在拋物線的定義中,定直線不經(jīng)過定點.此外,通過到定點和到定直線的距離之比為定值可將三種曲線統(tǒng)一在一起,稱為圓錐曲線.3、圓錐曲線定義的應(yīng)用主要有:求標(biāo)準(zhǔn)方程,將定義和余弦定理等結(jié)合使用,研究焦點三角形的周長、面積,求弦長、最值和離心率等.4、用解析法研究圓錐曲線的幾何性質(zhì)是通過方程進(jìn)行討論的,再通過方程來研究圓錐曲線的幾何性質(zhì).不僅要能由方程研究曲線的幾何性質(zhì),還要能運用兒何性質(zhì)解決有關(guān)問題,如利用坐標(biāo)范圍構(gòu)造函數(shù)或不等關(guān)系等.【核心考點】核心考點一:阿波羅尼斯圓與圓錐曲線【典型例題】例1.(2023·全國·高三專題練習(xí))設(shè)雙曲線SKIPIF1<0的左右兩個焦點分別為SKIPIF1<0、SKIPIF1<0,SKIPIF1<0是雙曲線上任意一點,過SKIPIF1<0的直線與SKIPIF1<0的平分線垂直,垂足為SKIPIF1<0,則點SKIPIF1<0的軌跡曲線SKIPIF1<0的方程________;SKIPIF1<0在曲線SKIPIF1<0上,點SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值________.例2.(2023·全國·高三專題練習(xí))希臘著名數(shù)學(xué)家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現(xiàn):“平面內(nèi)到兩個定點SKIPIF1<0的距離之比為定值SKIPIF1<0的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.已知在平面直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0是滿足SKIPIF1<0的阿氏圓上的任一點,則該阿氏圓的方程為____;若點SKIPIF1<0為拋物線SKIPIF1<0SKIPIF1<0上的動點,SKIPIF1<0在SKIPIF1<0軸上的射影為SKIPIF1<0,則SKIPIF1<0的最小值為______.例3.(2022春·江蘇鎮(zhèn)江·高二??计谥校┰谄矫嫔辖o定相異兩點A,B,設(shè)點P在同一平面上且滿足SKIPIF1<0,當(dāng)SKIPIF1<0且SKIPIF1<0時,P點的軌跡是一個圓,這個軌跡最先由古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn),故我們稱這個圓為阿波羅尼斯圓.現(xiàn)有雙曲線SKIPIF1<0,SKIPIF1<0分別為雙曲線的左?右焦點,A,B為雙曲線虛軸的上?下端點,動點P滿足SKIPIF1<0,SKIPIF1<0面積的最大值為4.點M,N在雙曲線上,且關(guān)于原點O對稱,Q是雙曲線上一點,直線SKIPIF1<0和SKIPIF1<0的斜率滿足SKIPIF1<0,則雙曲線方程是______________;過SKIPIF1<0的直線與雙曲線右支交于C,D兩點(其中C點在第一象限),設(shè)點SKIPIF1<0?SKIPIF1<0分別為SKIPIF1<0?SKIPIF1<0的內(nèi)心,則SKIPIF1<0的范圍是____________.核心考點二:蒙日圓【典型例題】例4.(2023·全國·高三專題練習(xí))蒙日圓涉及的是幾何學(xué)中的一個著名定理,該定理的內(nèi)容為:橢圓上兩條互相垂直的切線的交點必在一個與橢圓同心的圓上,該圓稱為原橢圓的蒙日圓,若橢圓SKIPIF1<0的蒙日圓為SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例5.(2023·全國·高三專題練習(xí))“蒙日圓”涉及幾何學(xué)中的一個著名定理,該定理的內(nèi)容為:橢圓上兩條互相垂直的切線的交點必在一個與橢圓同心的圓上,該圓稱為原橢圓的蒙日圓.若橢圓SKIPIF1<0:SKIPIF1<0SKIPIF1<0的離心率為SKIPIF1<0,則橢圓SKIPIF1<0的蒙日圓方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例6.(2023春·四川樂山·高二四川省樂山沫若中學(xué)??计谥校┘铀古翣枴っ扇眨▓D1)是18~19世紀(jì)法國著名的幾何學(xué)家,他在研究圓錐曲線時發(fā)現(xiàn):橢圓的任意兩條互相垂直的切線的交點都在同一個圓上,其圓心是橢圓的中心,這個圓被稱為“蒙日圓”(圖2).則橢圓SKIPIF1<0的蒙日圓的半徑為(
)A.3 B.4 C.5 D.6核心考點三:阿基米德三角形【典型例題】例7.(2023·高二課時練習(xí))拋物線上任意兩點SKIPIF1<0,SKIPIF1<0處的切線交于點SKIPIF1<0,稱SKIPIF1<0為“阿基米德三角形”,當(dāng)線段SKIPIF1<0經(jīng)過拋物線的焦點SKIPIF1<0時,SKIPIF1<0具有以下特征:①SKIPIF1<0點必在拋物線的準(zhǔn)線上;②SKIPIF1<0.若經(jīng)過拋物線SKIPIF1<0的焦點的一條弦為SKIPIF1<0,“阿基米德三角形”為SKIPIF1<0,且點SKIPIF1<0的縱坐標(biāo)為4,則直線SKIPIF1<0的方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例8.(2023·全國·高三專題練習(xí))阿基米德(Archimedes,公元前287年-公元前212年),出生于古希臘西西里島敘拉古(今意大利西西里島上),偉大的古希臘數(shù)學(xué)家、物理學(xué)家,與高斯、牛頓并稱為世界三大數(shù)學(xué)家.有一類三角形叫做阿基米德三角形(過拋物線的弦與過弦端點的兩切線所圍成的三角形),他利用“通近法”得到拋物線的弦與拋物線所圍成的封閉圖形的面積等于阿基米德三角形面積的SKIPIF1<0(即右圖中陰影部分面積等于SKIPIF1<0面積的SKIPIF1<0).若拋物線方程為SKIPIF1<0,且直線SKIPIF1<0與拋物線圍成封閉圖形的面積為6,則SKIPIF1<0(
)A.1 B.2 C.SKIPIF1<0 D.3例9.(2023·全國·高三專題練習(xí))阿基米德(公元前287年~公元前212年)是古希臘偉大的物理學(xué)家、數(shù)學(xué)家和天文學(xué)家.他研究拋物線的求積法得出著名的阿基米德定理,并享有“數(shù)學(xué)之神”的稱號.拋物線的弦與過弦的端點的兩條切線所圍成的三角形被稱為阿基米德三角形.如圖,SKIPIF1<0為阿基米德三角形.拋物線SKIPIF1<0上有兩個不同的點SKIPIF1<0,以A,B為切點的拋物線的切線SKIPIF1<0相交于P.給出如下結(jié)論,其中正確的為(
)(1)若弦SKIPIF1<0過焦點,則SKIPIF1<0為直角三角形且SKIPIF1<0;(2)點P的坐標(biāo)是SKIPIF1<0;(3)SKIPIF1<0的邊SKIPIF1<0所在的直線方程為SKIPIF1<0;(4)SKIPIF1<0的邊SKIPIF1<0上的中線與y軸平行(或重合).A.(2)(3)(4) B.(1)(2) C.(1)(2)(3) D.(1)(3)(4)核心考點四:仿射變換問題【典型例題】例10.(2023·全國·高三專題練習(xí))已知直線l與橢圓SKIPIF1<0交于M,N兩點,當(dāng)SKIPIF1<0______,SKIPIF1<0面積最大,并且最大值為______.記SKIPIF1<0,當(dāng)SKIPIF1<0面積最大時,SKIPIF1<0_____﹐SKIPIF1<0_______.Р是橢圓上一點,SKIPIF1<0,當(dāng)SKIPIF1<0面積最大時,SKIPIF1<0______.例11.(2023·全國·高三專題練習(xí))過橢圓SKIPIF1<0的右焦點F的直線與橢圓交于A,B兩點,則SKIPIF1<0面積最大值為_______.例12.(2023·全國·高三專題練習(xí))已知橢圓SKIPIF1<0左頂點為SKIPIF1<0,SKIPIF1<0為橢圓SKIPIF1<0上兩動點,直線SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,直線SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,直線SKIPIF1<0的斜率分別為SKIPIF1<0且SKIPIF1<0,SKIPIF1<0(SKIPIF1<0是非零實數(shù)),求SKIPIF1<0______________.核心考點五:圓錐曲線第二定義【典型例題】例13.(2023·全國·高三專題練習(xí))設(shè)F為拋物線SKIPIF1<0的焦點,過F且傾斜角為60°的直線交C于A,B兩點,則SKIPIF1<0(
)A.SKIPIF1<0 B.8 C.12 D.SKIPIF1<0例14.(2023·全國·高三專題練習(xí))過拋物線SKIPIF1<0焦點F的直線與該拋物線及其準(zhǔn)線都相交,交點從左到右依次為A,B,C.若SKIPIF1<0,則線段BC的中點到準(zhǔn)線的距離為(
)A.3 B.4 C.5 D.6例15.(2023·全國·高三專題練習(xí))如圖,過拋物線SKIPIF1<0的焦點F的直線交拋物線于點A,B,交其準(zhǔn)線l于點C,若F是AC的中點,且SKIPIF1<0,則線段AB的長為(
)A.5 B.6 C.SKIPIF1<0 D.SKIPIF1<0核心考點六:焦半徑問題【典型例題】例16.(2023·全國·高三專題練習(xí))已知點SKIPIF1<0是雙曲線SKIPIF1<0上的動點,SKIPIF1<0,SKIPIF1<0為該雙曲線的左右焦點,SKIPIF1<0為坐標(biāo)原點,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0例17.(2023·全國·高三專題練習(xí))已知雙曲線SKIPIF1<0的右支上的點SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0分別是雙曲線的左右焦點),則SKIPIF1<0為雙曲線SKIPIF1<0的半焦距)的取值范圍是(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0例18.(2023·全國·高三專題練習(xí))已知點P是雙曲線SKIPIF1<0上的動點,SKIPIF1<0,SKIPIF1<0是左、右焦點,O是坐標(biāo)原點,若SKIPIF1<0的最大值為SKIPIF1<0,則雙曲線的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2核心考點八:圓錐曲線第三定義【典型例題】例19.(江蘇省南京市中華中學(xué)2022-2023學(xué)年高二下學(xué)期初數(shù)學(xué)試題)橢圓SKIPIF1<0:SKIPIF1<0的左、右頂點分別為SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0在SKIPIF1<0上且直線SKIPIF1<0的斜率的取值范圍是SKIPIF1<0,那么直線SKIPIF1<0斜率的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例20.(2023·全國·高三專題練習(xí))橢圓SKIPIF1<0的左、右頂點分別為SKIPIF1<0,SKIPIF1<0,點SKIPIF1<0在SKIPIF1<0上且直線SKIPIF1<0的斜率的取值范圍是SKIPIF1<0,SKIPIF1<0,那么直線SKIPIF1<0斜率的取值范圍是(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0 C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0例21.(2023·全國·高三專題練習(xí))已知O為坐標(biāo)原點,橢圓SKIPIF1<0的左、右焦點分別是SKIPIF1<0,過點SKIPIF1<0且斜率為k的直線與圓SKIPIF1<0交于A,B兩點(點B在x軸上方),線段SKIPIF1<0與橢圓交于點M,SKIPIF1<0延長線與橢圓交于點N,且SKIPIF1<0,則橢圓的離心率為___________,直線SKIPIF1<0的斜率為___________.例22.(2023·全國·高三專題練習(xí))設(shè)橢圓SKIPIF1<0長軸的兩個頂點分別為SKIPIF1<0、SKIPIF1<0,點SKIPIF1<0為橢圓上不同于SKIPIF1<0、SKIPIF1<0的任一點,若將SKIPIF1<0的三個內(nèi)角記作SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,且滿足SKIPIF1<0,則橢圓的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點八:定比點差法與點差法【典型例題】例23.(2023·全國·高三專題練習(xí))已知斜率為SKIPIF1<0的直線SKIPIF1<0與橢圓SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點,線段SKIPIF1<0的中點為SKIPIF1<0(SKIPIF1<0),那么SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0,或SKIPIF1<0例24.(2023·全國·高三專題練習(xí))已知橢圓SKIPIF1<0,過點SKIPIF1<0的直線SKIPIF1<0與橢圓SKIPIF1<0交于SKIPIF1<0兩點,若點SKIPIF1<0恰為弦SKIPIF1<0中點,則直線SKIPIF1<0斜率是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例25.(2023·全國·高三專題練習(xí))已知橢圓SKIPIF1<0內(nèi)有一定點SKIPIF1<0,過點P的兩條直線SKIPIF1<0,SKIPIF1<0分別與橢圓SKIPIF1<0交于A、C和B、D兩點,且滿足SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0變化時,直線CD的斜率總為SKIPIF1<0,則橢圓SKIPIF1<0的離心率為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點九:切線問題【典型例題】例26.(2023·全國·高三專題練習(xí))已知過圓錐曲線SKIPIF1<0上一點SKIPIF1<0的切線方程為SKIPIF1<0.過橢圓SKIPIF1<0上的點SKIPIF1<0作橢圓的切線SKIPIF1<0,則過SKIPIF1<0點且與直線SKIPIF1<0垂直的直線方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例27.(2023·全國·高三專題練習(xí))已知點SKIPIF1<0?SKIPIF1<0,若過SKIPIF1<0?SKIPIF1<0兩點的動拋物線的準(zhǔn)線始終與圓SKIPIF1<0相切,該拋物線焦點的軌跡是某圓錐曲線的一部分,則該圓錐曲線是(
)A.橢圓 B.圓 C.雙曲線 D.拋物線例28.(2023·全國·高三專題練習(xí))設(shè)P是雙曲線C:SKIPIF1<0在第一象限內(nèi)的動點,O為坐標(biāo)原點,雙曲線C在P點處的切線的斜率為m,直線OP的斜率為n,則當(dāng)SKIPIF1<0取得最小值時,雙曲線C的離心率為(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.SKIPIF1<0核心考點十:焦點三角形問題【典型例題】例29.(2023春·河南洛陽·高二宜陽縣第一高級中學(xué)??茧A段練習(xí))已知橢圓SKIPIF1<0的左、右焦點分別為SKIPIF1<0、SKIPIF1<0,點SKIPIF1<0在橢圓上,若SKIPIF1<0,則SKIPIF1<0的面積為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例30.(2023·全國·高三專題練習(xí))橢圓兩焦點分別為SKIPIF1<0,SKIPIF1<0,動點SKIPIF1<0在橢圓上,若SKIPIF1<0的面積的最大值為12,則此橢圓上使得SKIPIF1<0為直角的點SKIPIF1<0有(
)A.SKIPIF1<0個 B.SKIPIF1<0個 C.SKIPIF1<0個 D.SKIPIF1<0個例31.(2023·全國·高三專題練習(xí))雙曲線SKIPIF1<0的左、右焦點分別SKIPIF1<0、SKIPIF1<0,P為雙曲線右支上的點,SKIPIF1<0的內(nèi)切圓與x軸相切于點C,則圓心I到y(tǒng)軸的距離為(
)A.1 B.2 C.3 D.4例32.(2023·全國·高三專題練習(xí))已知SKIPIF1<0在雙曲線SKIPIF1<0上,其左、右焦點分別為SKIPIF1<0、SKIPIF1<0,三角形SKIPIF1<0的內(nèi)切圓切x軸于點M,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點十一:焦點弦問題【典型例題】例33.(2023·全國·高三專題練習(xí))已知拋物線SKIPIF1<0的焦點F與橢圓SKIPIF1<0的右焦點重合.斜率為SKIPIF1<0直線l經(jīng)過點F,且與C的交點為A,B.若SKIPIF1<0,則直線l的方程是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0例34.(2023·全國·高三專題練習(xí))拋物線SKIPIF1<0的焦點弦被焦點分成長是m和n的兩部分,則m與n的關(guān)系是(
)A.m+n=mn B.m+n=4 C.mn=4 D.無法確定例35.(2023春·河南南陽·高二統(tǒng)考期中)如圖所示,SKIPIF1<0,SKIPIF1<0是雙曲線SKIPIF1<0:SKIPIF1<0的左、右焦點,過SKIPIF1<0的直線與SKIPIF1<0的左、右兩支分別交于A,SKIPIF1<0兩點.若SKIPIF1<0,則雙曲線的離心率為(
)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0核心考點十二:圓錐曲線與張角問題【典型例題】例36.(2023·全國·高三專題練習(xí))定義:點SKIPIF1<0為曲線SKIPIF1<0外的一點,SKIPIF1<0為SKIPIF1<0上的兩個動點,則SKIPIF1<0取最大值時,SKIPIF1<0叫點SKIPIF1<0對曲線SKIPIF1<0的張角.已知點SKIPIF1<0為拋物線SKIPIF1<0上的動點,設(shè)SKIPIF1<0對圓SKIPIF1<0的張角為SKIPIF1<0,則SKIPIF1<0的最小值為___________.例37.(2023春·山東·高二山東省實驗中學(xué)??茧A段練習(xí))已知橢圓SKIPIF1<0的左、右焦點分別為SKIPIF1<0,SKIPIF1<0,點P在C上,直線PF2與y軸交于點Q,點P在線段SKIPIF1<0上,SKIPIF1<0的內(nèi)切圓的圓心為SKIPIF1<0,若SKIPIF1<0為正三角形,則SKIPIF1<0=___________,C的離心率的取值范圍是___________.核心考點十三:圓錐曲線與角平分線問題【典型例題】例38.(2022春·廣東廣州·高二校聯(lián)考期中)已知橢圓SKIPIF1<0的左?右焦點分別為SKIPIF1<0為SKIPIF1<0上不與左?右頂點重合的一點,SKIPIF1<0為SKIPIF1<0的內(nèi)心,且SKIPIF1<0,則SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例39.(2023春·遼寧鐵嶺·高二昌圖縣第一高級中學(xué)??计谥校╇p曲線SKIPIF1<0的左右焦點分別為SKIPIF1<0、SKIPIF1<0,SKIPIF1<0是雙曲線右支上一點,SKIPIF1<0為SKIPIF1<0的內(nèi)心,SKIPIF1<0交SKIPIF1<0軸于SKIPIF1<0點,若SKIPIF1<0,且SKIPIF1<0,則雙曲線的離心率SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例40.(2023·全國·高三專題練習(xí))已知橢圓SKIPIF1<0的兩個焦點SKIPIF1<0,SKIPIF1<0與短軸的兩個端點SKIPIF1<0,SKIPIF1<0都在圓SKIPIF1<0上,SKIPIF1<0是SKIPIF1<0上除長軸端點外的任意一點,SKIPIF1<0的平分線交SKIPIF1<0的長軸于點SKIPIF1<0,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點十四:圓錐曲線與通徑問題【典型例題】例41.(2023·全國·高三專題練習(xí))在平面直角坐標(biāo)系SKIPIF1<0中,以點SKIPIF1<0,SKIPIF1<0為焦點的動橢圓與雙曲線SKIPIF1<0的右支有公共點,則橢圓通徑的最小值為______.例42.(2023·全國·高三專題練習(xí))過拋物線SKIPIF1<0的焦點SKIPIF1<0的直線與SKIPIF1<0交于SKIPIF1<0兩點,且SKIPIF1<0,SKIPIF1<0的準(zhǔn)線SKIPIF1<0與SKIPIF1<0軸交于SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0的通徑長為___________.例43.(2023·全國·高三專題練習(xí))過雙曲線的焦點與雙曲線實軸垂直的直線被雙曲線截得的線段的長稱為雙曲線的通徑,其長等于SKIPIF1<0(SKIPIF1<0、SKIPIF1<0分別為雙曲線的實半軸長與虛半軸長).已知雙曲線SKIPIF1<0(SKIPIF1<0)的左、右焦點分別為SKIPIF1<0、SKIPIF1<0,若點SKIPIF1<0是雙曲線SKIPIF1<0上位于第四象限的任意一點,直線SKIPIF1<0是雙曲線的經(jīng)過第二、四象限的漸近線,SKIPIF1<0于點SKIPIF1<0,且SKIPIF1<0的最小值為3,則雙曲線SKIPIF1<0的通徑為__________.核心考點十五:圓錐曲線的光學(xué)性質(zhì)問題【典型例題】例44.(2023·全國·高三專題練習(xí))橢圓有這樣的光學(xué)性質(zhì):從橢圓的一個焦點出發(fā)的光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一個焦點,今有一個水平放置的橢圓形臺球盤,點SKIPIF1<0、SKIPIF1<0是它的焦點,長軸長為SKIPIF1<0,焦距為SKIPIF1<0,靜放在點SKIPIF1<0的小球(小球的半徑不計),從點SKIPIF1<0沿直線出發(fā),經(jīng)橢圓壁反彈后第一次回到點SKIPIF1<0時,小球經(jīng)過的路程是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.以上答案均有可能例45.(2023·全國·高三專題練習(xí))雙曲線的光學(xué)性質(zhì)為:從雙曲線一個焦點發(fā)出的光,經(jīng)過反射后,反射光線的反向延長線都匯聚到雙曲線的另一個焦點上,若雙曲線E的焦點分別為SKIPIF1<0,SKIPIF1<0,經(jīng)過SKIPIF1<0且與SKIPIF1<0SKIPIF1<0垂直的光線經(jīng)雙曲線E反射后,與SKIPIF1<0SKIPIF1<0成45°角,則雙曲線E的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例46.(2023·全國·高三專題練習(xí))拋物線有如下光學(xué)性質(zhì):由其焦點射出的光線經(jīng)拋物線反射后,沿平行于拋物線對稱軸的方向射出;反之,平行于拋物線對稱軸的入射光線經(jīng)拋物線反射后必過拋物線的焦點.已知拋物線SKIPIF1<0,一條平行于x軸的光線SKIPIF1<0從點SKIPIF1<0射入,經(jīng)過SKIPIF1<0上的點SKIPIF1<0反射后,再經(jīng)SKIPIF1<0上另一點SKIPIF1<0反射后,沿直線SKIPIF1<0射出,則SKIPIF1<0(
)A.7 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0核心考點十六:圓錐曲線與四心問題【典型例題】例47.(2023·全國·高三專題練習(xí))已知橢圓SKIPIF1<0:SKIPIF1<0,過其左焦點SKIPIF1<0作直線l交橢圓SKIPIF1<0于P,A兩點,取P點關(guān)于x軸的對稱點B.若G點為SKIPIF1<0的外心,則SKIPIF1<0(
)A.2 B.3 C.4 D.以上都不對例48.(2023·全國·高三專題練習(xí))雙曲線SKIPIF1<0的漸近線與拋物線SKIPIF1<0交于點SKIPIF1<0,若拋物線SKIPIF1<0的焦點恰為SKIPIF1<0的內(nèi)心,則雙曲線SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0例49.(2023·全國·高三專題練習(xí))已知雙曲線SKIPIF1<0:SKIPIF1<0的左、右焦點分別是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是雙曲線右支上一點,且SKIPIF1<0,SKIPIF1<0和SKIPIF1<0分別是SKIPIF1<0的內(nèi)心和重心,若SKIPIF1<0與SKIPIF1<0軸平行,則雙曲線的離心率為(
)A.SKIPIF1<0 B.2 C.3 D.4例50.(2023·全國·高三專題練習(xí))記橢圓SKIPIF1<0:SKIPIF1<0的左右焦點為SKIPIF1<0,SKIPIF1<0,過SKIPIF1<0的直線SKIPIF1<0交橢圓于SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0處的切線交于點SKIPIF1<0,設(shè)SKIPIF1<0的垂心為SKIPIF1<0,則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【新題速遞】一、單選題1.(2023春·福建泉州·高三階段練習(xí))已知橢圓SKIPIF1<0:SKIPIF1<0的左右頂點分別為SKIPIF1<0,SKIPIF1<0,圓SKIPIF1<0的方程為SKIPIF1<0,動點SKIPIF1<0在曲線SKIPIF1<0上運動,動點SKIPIF1<0在圓SKIPIF1<0上運動,若SKIPIF1<0的面積為SKIPIF1<0,記SKIPIF1<0的最大值和最小值分別為SKIPIF1<0和SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2023·河南鄭州·高三階段練習(xí))公元SKIPIF1<0年,唐代李淳風(fēng)注《九章算術(shù)》時提到祖暅的開立圓術(shù).祖暅在求球體積時,使用一個原理:“冪勢既同,則積不容異”.“冪”是截面積,“勢”是立體的高.意思是兩個同高的幾何體,如在等高處的截面面積相等﹐則體積相等.更詳細(xì)點說就是,界于兩個平行平面之間的兩個立體,被任一平行于這兩個平面的平面所截,如果兩個截面的面積相等,則這兩個幾何體的體積相等.上述原理在中國被稱為祖暅原理,國外則一般稱之為卡瓦列利原理.已知將雙曲線SKIPIF1<0與直線SKIPIF1<0圍成的圖形繞SKIPIF1<0軸旋轉(zhuǎn)一周得到一個旋轉(zhuǎn)體SKIPIF1<0,則旋轉(zhuǎn)體SKIPIF1<0的體積是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2023·廣西南寧·南寧二中??家荒#┰O(shè)SKIPIF1<0是雙曲線SKIPIF1<0的左、右兩個焦點,O為坐標(biāo)原點,點P在C上且SKIPIF1<0,則SKIPIF1<0的面積為(
)A.5 B.8 C.10 D.124.(2023·全國·高三校聯(lián)考階段練習(xí))在平面直角坐標(biāo)系中,已知點SKIPIF1<0,SKIPIF1<0,動點SKIPIF1<0滿足SKIPIF1<0,過點SKIPIF1<0的直線與動點SKIPIF1<0的軌跡交于SKIPIF1<0,SKIPIF1<0兩點,記點SKIPIF1<0的軌跡的對稱中心為SKIPIF1<0,則當(dāng)SKIPIF1<0面積取最大值時,直線SKIPIF1<0的方程是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.(2023春·北京大興·高三??茧A段練習(xí))數(shù)學(xué)美的表現(xiàn)形式不同于自然美或藝術(shù)美那樣直觀,它蘊藏于特有的抽象概念,公式符號,推理論證,思維方法等之中,揭示了規(guī)律性,是一種科學(xué)的真實美.平面直角坐標(biāo)系中,曲線SKIPIF1<0就是一條形狀優(yōu)美的曲線,對于此曲線,給出如下結(jié)論:①曲線SKIPIF1<0圍成的圖形的面積是SKIPIF1<0;②曲線SKIPIF1<0上的任意兩點間的距離不超過2;③若SKIPIF1<0是曲線SKIPIF1<0上任意一點,則SKIPIF1<0的最小值是1.其中正確結(jié)論的個數(shù)為(
)A.0 B.1 C.2 D.36.(2023春·重慶·高三統(tǒng)考階段練習(xí))已知點P為拋物線SKIPIF1<0上一動點,點Q為圓SKIPIF1<0上一動點,點F為拋物線的焦點,點P到y(tǒng)軸的距離為d,若SKIPIF1<0的最小值為2,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2023·全國·高三專題練習(xí))如圖所示,SKIPIF1<0,SKIPIF1<0是雙曲線SKIPIF1<0:SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)的左、右焦點,SKIPIF1<0的右支上存在一點SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的左支的交點SKIPIF1<0滿足SKIPIF1<0,則雙曲線SKIPIF1<0的離心率為(
)A.3 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<08.(2023·北京·高三專題練習(xí))在平面直角坐標(biāo)系中,SKIPIF1<0是直線SKIPIF1<0上的兩點,且SKIPIF1<0.若對于任意點SKIPIF1<0,存在SKIPIF1<0使SKIPIF1<0成立,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.(2023·全國·高三專題練習(xí))用平面截圓柱面,當(dāng)圓柱的軸與SKIPIF1<0所成角為銳角時,圓柱面的截線是一個橢圓.著名數(shù)學(xué)家Dandelin創(chuàng)立的雙球?qū)嶒炞C明了上述結(jié)論.如圖所示,將兩個大小相同的球嵌入圓柱內(nèi),使它們分別位于SKIPIF1<0的上方和下方,并且與圓柱面和SKIPIF1<0均相切.給出下列三個結(jié)論:①兩個球與SKIPIF1<0的切點是所得橢圓的兩個焦點;②橢圓的短軸長與嵌入圓柱的球的直徑相等;③當(dāng)圓柱的軸與SKIPIF1<0所成的角由小變大時,所得橢圓的離心率也由小變大.其中,所有正確結(jié)論的序號是(
)A.① B.②③ C.①② D.①③10.(2023春·內(nèi)蒙古赤峰·高三統(tǒng)考階段練習(xí))已知圓SKIPIF1<0和圓SKIPIF1<0相交于A,B兩點,下列說法中錯誤的是(
).A.圓O與圓M有兩條公切線B.圓O與圓M關(guān)于直線SKIPIF1<0對稱C.線段SKIPIF1<0的長為SKIPIF1<0D.E,F(xiàn)分別是圓O和圓M上的點,則SKIPIF1<0的最大值為SKIPIF1<0二、多選題11.(2023·全國·高三校聯(lián)考階段練習(xí))已知SKIPIF1<0是拋物線SKIPIF1<0的焦點,SKIPIF1<0是拋物線SKIPIF1<0上的兩點,SKIPIF1<0為坐標(biāo)原點,則(
)A.若SKIPIF1<0軸,則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0的面積為SKIPIF1<0C.SKIPIF1<0長度的最小值為SKIPIF1<0 D.若SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 低空經(jīng)濟(jì)發(fā)展指數(shù)報告
- DB13T 5042-2019 電梯維護(hù)保養(yǎng)年度自檢規(guī)范
- DB13T 5058-2019 放養(yǎng)雞球蟲病防治技術(shù)規(guī)程
- 中層干部面試題庫及答案
- 質(zhì)量管理學(xué)自考試題及答案
- 基于患者需求的診所服務(wù)設(shè)計與優(yōu)化研究-洞察闡釋
- 早教在線平臺行業(yè)深度調(diào)研及發(fā)展項目商業(yè)計劃書
- 產(chǎn)品責(zé)任張華77課件
- 矩形鋼管HDCC翼緣蜂窩鋼腹板組合梁抗彎與抗震性能研究
- 招聘護(hù)理筆試題目及答案
- 2024-2025學(xué)年七年級下學(xué)期英語人教版(2024)期末達(dá)標(biāo)測試卷A卷(含解析)
- 2025年河南省鄭州市中原區(qū)中考數(shù)學(xué)第三次聯(lián)考試卷
- 《法律文書情境訓(xùn)練》課件-第一審民事判決書的寫作(上)
- 外科總論考試題+答案
- 廣告宣傳服務(wù)方案投標(biāo)文件(技術(shù)方案)
- 2023年山東省青島市中考數(shù)學(xué)真題【含答案、解析】
- 2025-2030中國尼龍紗行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略研究報告
- 烘焙設(shè)備智能化升級行業(yè)深度調(diào)研及發(fā)展戰(zhàn)略咨詢報告
- 基于新課標(biāo)的初中英語單元整體教學(xué)設(shè)計與實踐
- 2025春季學(xué)期國家開放大學(xué)專科《幼兒園課程基礎(chǔ)》一平臺在線形考形成性考核作業(yè)(二)試題及答案
- T-CCFA 01029-2017 循環(huán)再利用對苯二甲酸二甲酯
評論
0/150
提交評論