2021-2022學(xué)年浙江省麗水市名校中考數(shù)學(xué)押題卷含解析_第1頁
2021-2022學(xué)年浙江省麗水市名校中考數(shù)學(xué)押題卷含解析_第2頁
2021-2022學(xué)年浙江省麗水市名校中考數(shù)學(xué)押題卷含解析_第3頁
2021-2022學(xué)年浙江省麗水市名校中考數(shù)學(xué)押題卷含解析_第4頁
2021-2022學(xué)年浙江省麗水市名校中考數(shù)學(xué)押題卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022學(xué)年浙江省麗水市名校中考數(shù)學(xué)押題卷注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.用配方法解方程時,可將方程變形為()A. B. C. D.2.在平面直角坐標(biāo)系中,若點A(a,-b)在第一象限內(nèi),則點B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限3.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.214.如圖,直線、及木條在同一平面上,將木條繞點旋轉(zhuǎn)到與直線平行時,其最小旋轉(zhuǎn)角為().A. B. C. D.5.半徑為的正六邊形的邊心距和面積分別是()A., B.,C., D.,6.某校八(2)班6名女同學(xué)的體重(單位:kg)分別為35,36,38,40,42,42,則這組數(shù)據(jù)的中位數(shù)是()A.38 B.39 C.40 D.427.已知,則的值是A.60 B.64 C.66 D.728.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D,則下列說法中正確的個數(shù)是①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.49.如圖,在△ABC中,AB=AC,點D是邊AC上一點,BC=BD=AD,則∠A的大小是().A.36° B.54° C.72° D.30°10.為了增強學(xué)生體質(zhì),學(xué)校發(fā)起評選“健步達(dá)人”活動,小明用計步器記錄自己一個月(30天)每天走的步數(shù),并繪制成如下統(tǒng)計表:步數(shù)(萬步)1.01.21.11.41.3天數(shù)335712在每天所走的步數(shù)這組數(shù)據(jù)中,眾數(shù)和中位數(shù)分別是()A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.4二、填空題(本大題共6個小題,每小題3分,共18分)11.有一組數(shù)據(jù):3,5,5,6,7,這組數(shù)據(jù)的眾數(shù)為_____.12.拋物線y=﹣x2+bx+c的部分圖象如圖所示,則關(guān)于x的一元二次方程﹣x2+bx+c=0的解為_____.13.某招聘考試分筆試和面試兩種,其中筆試按60%、面試按40%計算加權(quán)平均數(shù),作為總成績.孔明筆試成績90分,面試成績85分,那么孔明的總成績是分.14.分式與的最簡公分母是_____.15.ABCD為矩形的四個頂點,AB=16cm,AD=6cm,動點P、Q分別從點A、C同時出發(fā),點P以3cm/s的速度向點B移動,一直到達(dá)B為止,點Q以2cm/s的速度向D移動,P、Q兩點從出發(fā)開始到__________秒時,點P和點Q的距離是10cm.16.已知m=,n=,那么2016m﹣n=_____.三、解答題(共8題,共72分)17.(8分)在△ABC中,已知AB=AC,∠BAC=90°,E為邊AC上一點,連接BE.如圖1,若∠ABE=15°,O為BE中點,連接AO,且AO=1,求BC的長;如圖2,D為AB上一點,且滿足AE=AD,過點A作AF⊥BE交BC于點F,過點F作FG⊥CD交BE的延長線于點G,交AC于點M,求證:BG=AF+FG.18.(8分)如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足H在半徑OB上,AH=5,CD=,點E在弧AD上,射線AE與CD的延長線交于點F.(1)求圓O的半徑;(2)如果AE=6,求EF的長.19.(8分)綜合與探究如圖,拋物線y=﹣與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,直線l經(jīng)過B,C兩點,點M從點A出發(fā)以每秒1個單位長度的速度向終點B運動,連接CM,將線段MC繞點M順時針旋轉(zhuǎn)90°得到線段MD,連接CD,BD.設(shè)點M運動的時間為t(t>0),請解答下列問題:(1)求點A的坐標(biāo)與直線l的表達(dá)式;(2)①直接寫出點D的坐標(biāo)(用含t的式子表示),并求點D落在直線l上時的t的值;②求點M運動的過程中線段CD長度的最小值;(3)在點M運動的過程中,在直線l上是否存在點P,使得△BDP是等邊三角形?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.20.(8分)如圖1,反比例函數(shù)(x>0)的圖象經(jīng)過點A(,1),射線AB與反比例函數(shù)圖象交于另一點B(1,a),射線AC與y軸交于點C,∠BAC=75°,AD⊥y軸,垂足為D.(1)求k的值;(2)求tan∠DAC的值及直線AC的解析式;(3)如圖2,M是線段AC上方反比例函數(shù)圖象上一動點,過M作直線l⊥x軸,與AC相交于點N,連接CM,求△CMN面積的最大值.21.(8分)如圖,一次函數(shù)y1=kx+b(k≠0)和反比例函數(shù)y2=(m≠0)的圖象交于點A(-1,6),B(a,-2).求一次函數(shù)與反比例函數(shù)的解析式;根據(jù)圖象直接寫出y1>y2時,x的取值范圍.22.(10分)張老師在黑板上布置了一道題:計算:2(x+1)2﹣(4x﹣5),求當(dāng)x=和x=﹣時的值.小亮和小新展開了下面的討論,你認(rèn)為他們兩人誰說的對?并說明理由.23.(12分)如圖,已知D是AC上一點,AB=DA,DE∥AB,∠B=∠DAE.求證:BC=AE.24.主題班會上,王老師出示了如圖所示的一幅漫畫,經(jīng)過同學(xué)們的一番熱議,達(dá)成以下四個觀點:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理競爭,合作雙贏.要求每人選取其中一個觀點寫出自己的感悟.根據(jù)同學(xué)們的選擇情況,小明繪制了下面兩幅不完整的圖表,請根據(jù)圖表中提供的信息,解答下列問題:觀點頻數(shù)頻率Aa0.2B120.24C8bD200.4(1)參加本次討論的學(xué)生共有人;表中a=,b=;(2)在扇形統(tǒng)計圖中,求D所在扇形的圓心角的度數(shù);(3)現(xiàn)準(zhǔn)備從A,B,C,D四個觀點中任選兩個作為演講主題,請用列表或畫樹狀圖的方法求選中觀點D(合理競爭,合作雙贏)的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

配方法一般步驟:將常數(shù)項移到等號右側(cè),左右兩邊同時加一次項系數(shù)一半的平方,配方即可.【詳解】解:故選D.【點睛】本題考查了配方法解方程的步驟,屬于簡單題,熟悉步驟是解題關(guān)鍵.2、D【解析】

先根據(jù)第一象限內(nèi)的點的坐標(biāo)特征判斷出a、b的符號,進(jìn)而判斷點B所在的象限即可.【詳解】∵點A(a,-b)在第一象限內(nèi),∴a>0,-b>0,∴b<0,∴點B((a,b)在第四象限,故選D.【點睛】本題考查了點的坐標(biāo),解決本題的關(guān)鍵是牢記平面直角坐標(biāo)系中各個象限內(nèi)點的符號特征:第一象限正正,第二象限負(fù)正,第三象限負(fù)負(fù),第四象限正負(fù).3、A【解析】

根據(jù)已知作出三角形的高線AD,進(jìn)而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,

∴cosB==,

∴∠B=45°,

∵sinC===,

∴AD=3,

∴CD==4,

∴BD=3,

則△ABC的面積是:×AD×BC=×3×(3+4)=.

故選:A.【點睛】此題主要考查了解直角三角形的知識,作出AD⊥BC,進(jìn)而得出相關(guān)線段的長度是解決問題的關(guān)鍵.4、B【解析】

如圖所示,過O點作a的平行線d,根據(jù)平行線的性質(zhì)得到∠2=∠3,進(jìn)而求出將木條c繞點O旋轉(zhuǎn)到與直線a平行時的最小旋轉(zhuǎn)角.【詳解】如圖所示,過O點作a的平行線d,∵a∥d,由兩直線平行同位角相等得到∠2=∠3=50°,木條c繞O點與直線d重合時,與直線a平行,旋轉(zhuǎn)角∠1+∠2=90°.故選B【點睛】本題主要考查圖形的旋轉(zhuǎn)與平行線,解題的關(guān)鍵是熟練掌握平行線的性質(zhì).5、A【解析】

首先根據(jù)題意畫出圖形,易得△OBC是等邊三角形,繼而可得正六邊形的邊長為R,然后利用解直角三角形求得邊心距,又由S正六邊形=求得正六邊形的面積.【詳解】解:如圖,O為正六邊形外接圓的圓心,連接OB,OC,過點O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,半徑為,∴∠BOC=,∵OB=OC=R,∴△OBC是等邊三角形,∴BC=OB=OC=R,∵OH⊥BC,∴在中,,即,∴,即邊心距為;∵,∴S正六邊形=,故選:A.【點睛】本題考查了正多邊形和圓的知識;求得正六邊形的中心角為60°,得到等邊三角形是正確解答本題的關(guān)鍵.6、B【解析】

根據(jù)中位數(shù)的定義求解,把數(shù)據(jù)按大小排列,第3、4個數(shù)的平均數(shù)為中位數(shù).【詳解】解:由于共有6個數(shù)據(jù),

所以中位數(shù)為第3、4個數(shù)的平均數(shù),即中位數(shù)為=39,

故選:B.【點睛】本題主要考查了中位數(shù).要明確定義:將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅暨@組數(shù)據(jù)的個數(shù)是奇數(shù),則最中間的那個數(shù)叫做這組數(shù)據(jù)的中位數(shù);若這組數(shù)據(jù)的個數(shù)是偶數(shù),則最中間兩個數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).7、A【解析】

將代入原式,計算可得.【詳解】解:當(dāng)時,原式,故選A.【點睛】本題主要考查分式的加減法,解題的關(guān)鍵是熟練掌握完全平方公式.8、D【解析】

①根據(jù)作圖的過程可知,AD是∠BAC的平分線.故①正確.②如圖,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分線,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正確.③∵∠1=∠B=10°,∴AD=BD.∴點D在AB的中垂線上.故③正確.④∵如圖,在直角△ACD中,∠2=10°,∴CD=AD.∴BC=CD+BD=AD+AD=AD,S△DAC=AC?CD=AC?AD.∴S△ABC=AC?BC=AC?AD=AC?AD.∴S△DAC:S△ABC.故④正確.綜上所述,正確的結(jié)論是:①②③④,,共有4個.故選D.9、A【解析】

由BD=BC=AD可知,△ABD,△BCD為等腰三角形,設(shè)∠A=∠ABD=x,則∠C=∠CDB=2x,又由AB=AC可知,△ABC為等腰三角形,則∠ABC=∠C=2x.在△ABC中,用內(nèi)角和定理列方程求解.【詳解】解:∵BD=BC=AD,∴△ABD,△BCD為等腰三角形,設(shè)∠A=∠ABD=x,則∠C=∠CDB=2x.又∵AB=AC,∴△ABC為等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.故選A.【點睛】本題考查了等腰三角形的性質(zhì).關(guān)鍵是利用等腰三角形的底角相等,外角的性質(zhì),內(nèi)角和定理,列方程求解.10、B【解析】

在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1.1,得到這組數(shù)據(jù)的眾數(shù);把這組數(shù)據(jù)按照從小到大的順序排列,第15、16個數(shù)的平均數(shù)是中位數(shù).【詳解】在這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是1.1,即眾數(shù)是1.1.要求一組數(shù)據(jù)的中位數(shù),把這組數(shù)據(jù)按照從小到大的順序排列,第15、16個兩個數(shù)都是1.1,所以中位數(shù)是1.1.故選B.【點睛】本題考查一組數(shù)據(jù)的中位數(shù)和眾數(shù),在求中位數(shù)時,首先要把這列數(shù)字按照從小到大或從的大到小排列,找出中間一個數(shù)字或中間兩個數(shù)字的平均數(shù)即為所求.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

根據(jù)眾數(shù)的概念進(jìn)行求解即可得.【詳解】在數(shù)據(jù)3,1,1,6,7中1出現(xiàn)次數(shù)最多,所以這組數(shù)據(jù)的眾數(shù)為1,故答案為:1.【點睛】本題考查了眾數(shù)的概念,熟知一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù)是解題的關(guān)鍵.12、x1=1,x2=﹣1.【解析】

直接觀察圖象,拋物線與x軸交于1,對稱軸是x=﹣1,所以根據(jù)拋物線的對稱性可以求得拋物線與x軸的另一交點坐標(biāo),從而求得關(guān)于x的一元二次方程﹣x2+bx+c=0的解.【詳解】解:觀察圖象可知,拋物線y=﹣x2+bx+c與x軸的一個交點為(1,0),對稱軸為x=﹣1,∴拋物線與x軸的另一交點坐標(biāo)為(﹣1,0),∴一元二次方程﹣x2+bx+c=0的解為x1=1,x2=﹣1.故本題答案為:x1=1,x2=﹣1.【點睛】本題考查了二次函數(shù)與一元二次方程的關(guān)系.一元二次方程-x2+bx+c=0的解實質(zhì)上是拋物線y=-x2+bx+c與x軸交點的橫坐標(biāo)的值.13、88【解析】試題分析:根據(jù)筆試和面試所占的百分比以及筆試成績和面試成績,列出算式,進(jìn)行計算即可:∵筆試按60%、面試按40%計算,∴總成績是:90×60%+85×40%=88(分).14、3a2b【解析】

利用取各分母系數(shù)的最小公倍數(shù)與字母因式的最高次冪的積作公分母求解即可.【詳解】分式與的最簡公分母是3a2b.故答案為3a2b.【點睛】本題考查最簡公分母,解題的關(guān)鍵是掌握求最簡公分母的方法.15、或【解析】

作PH⊥CD,垂足為H,設(shè)運動時間為t秒,用t表示線段長,用勾股定理列方程求解.【詳解】設(shè)P,Q兩點從出發(fā)經(jīng)過t秒時,點P,Q間的距離是10cm,作PH⊥CD,垂足為H,則PH=AD=6,PQ=10,∵DH=PA=3t,CQ=2t,∴HQ=CD?DH?CQ=|16?5t|,由勾股定理,得解得即P,Q兩點從出發(fā)經(jīng)過1.6或4.8秒時,點P,Q間的距離是10cm.故答案為或.【點睛】考查矩形的性質(zhì),勾股定理,解一元二次方程等,表示出HQ=CD?DH?CQ=|16?5t|是解題的關(guān)鍵.16、1【解析】

根據(jù)積的乘方的性質(zhì)將m的分子轉(zhuǎn)化為以3和5為底數(shù)的冪的積,然后化簡從而得到m=n,再根據(jù)任何非零數(shù)的零次冪等于1解答.【詳解】解:∵m===,∴m=n,∴2016m-n=20160=1.故答案為:1【點睛】本題考查了同底數(shù)冪的除法,積的乘方的性質(zhì),難點在于轉(zhuǎn)化m的分母并得到m=n.三、解答題(共8題,共72分)17、(1)3+【解析】

(1)如圖1中,在AB上取一點M,使得BM=ME,連接ME.,設(shè)AE=x,則ME=BM=2x,AM=3x,根據(jù)AB2+AE2=BE2,可得方程(2x+3x)2+x2=22,解方程即可解決問題.

(2)如圖2中,作CQ⊥AC,交AF的延長線于Q,首先證明EG=MG,再證明FM=FQ即可解決問題.【詳解】解:如圖1中,在AB上取一點M,使得BM=ME,連接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵M(jìn)B=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,設(shè)AE=x,則ME=BM=2x,AM=3x,∵AB2+AE2=BE2,∴2x+3∴x=6-∴AB=AC=(2+3)?6-∴BC=2AB=3+1.作CQ⊥AC,交AF的延長線于Q,∵AD=AE,AB=AC,∠BAE=∠CAD,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠BAC=90°,F(xiàn)G⊥CD,∴∠AEB=∠CMF,∴∠GEM=∠GME,∴EG=MG,∵∠ABE=∠CAQ,AB=AC,∠BAE=∠ACQ=90°,∴△ABE≌△CAQ(ASA),∴BE=AQ,∠AEB=∠Q,∴∠CMF=∠Q,∵∠MCF=∠QCF=45°,CF=CF,∴△CMF≌△CQF(AAS),∴FM=FQ,∴BE=AQ=AF+FQ=AF=FM,∵EG=MG,∴BG=BE+EG=AF+FM+MG=AF+FG.【點睛】本題考查全等三角形的判定和性質(zhì)、直角三角形斜邊中線定理,等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造全等三角形解決問題.18、(1)圓的半徑為4.5;(2)EF=.【解析】

(1)連接OD,根據(jù)垂徑定理得:DH=2,設(shè)圓O的半徑為r,根據(jù)勾股定理列方程可得結(jié)論;(2)過O作OG⊥AE于G,證明△AGO∽△AHF,列比例式可得AF的長,從而得EF的長.【詳解】(1)連接OD,∵直徑AB⊥弦CD,CD=4,∴DH=CH=CD=2,在Rt△ODH中,AH=5,設(shè)圓O的半徑為r,根據(jù)勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,解得:r=4.5,則圓的半徑為4.5;(2)過O作OG⊥AE于G,∴AG=AE=×6=3,∵∠A=∠A,∠AGO=∠AHF,∴△AGO∽△AHF,∴,∴,∴AF=,∴EF=AF﹣AE=﹣6=.【點睛】本題考查了垂徑定理,勾股定理,相似三角形的判定與性質(zhì),解答本題的關(guān)鍵是正確添加輔助線并熟練掌握垂徑定理和相似三角形的判定與性質(zhì).19、(1)A(﹣3,0),y=﹣x+;(2)①D(t﹣3+,t﹣3),②CD最小值為;(3)P(2,﹣),理由見解析.【解析】

(1)當(dāng)y=0時,﹣=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系數(shù)法可求直線l的表達(dá)式;(2)分當(dāng)點M在AO上運動時,當(dāng)點M在OB上運動時,進(jìn)行討論可求D點坐標(biāo),將D點坐標(biāo)代入直線解析式求得t的值;線段CD是等腰直角三角形CMD斜邊,若CD最小,則CM最小,根據(jù)勾股定理可求點M運動的過程中線段CD長度的最小值;(3)分當(dāng)點M在AO上運動時,即0<t<3時,當(dāng)點M在OB上運動時,即3≤t≤4時,進(jìn)行討論可求P點坐標(biāo).【詳解】(1)當(dāng)y=0時,﹣=0,解得x1=1,x2=﹣3,∵點A在點B的左側(cè),∴A(﹣3,0),B(1,0),由解析式得C(0,),設(shè)直線l的表達(dá)式為y=kx+b,將B,C兩點坐標(biāo)代入得b=mk﹣,故直線l的表達(dá)式為y=﹣x+;(2)當(dāng)點M在AO上運動時,如圖:由題意可知AM=t,OM=3﹣t,MC⊥MD,過點D作x軸的垂線垂足為N,∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠DMN,在△MCO與△DMN中,,∴△MCO≌△DMN,∴MN=OC=,DN=OM=3﹣t,∴D(t﹣3+,t﹣3);同理,當(dāng)點M在OB上運動時,如圖,OM=t﹣3,△MCO≌△DMN,MN=OC=,ON=t﹣3+,DN=OM=t﹣3,∴D(t﹣3+,t﹣3).綜上得,D(t﹣3+,t﹣3).將D點坐標(biāo)代入直線解析式得t=6﹣2,線段CD是等腰直角三角形CMD斜邊,若CD最小,則CM最小,∵M(jìn)在AB上運動,∴當(dāng)CM⊥AB時,CM最短,CD最短,即CM=CO=,根據(jù)勾股定理得CD最??;(3)當(dāng)點M在AO上運動時,如圖,即0<t<3時,∵tan∠CBO==,∴∠CBO=60°,∵△BDP是等邊三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=3﹣t,AN=t+,NB=4﹣t﹣,tan∠NBO=,=,解得t=3﹣,經(jīng)檢驗t=3﹣是此方程的解,過點P作x軸的垂線交于點Q,易知△PQB≌△DNB,∴BQ=BN=4﹣t﹣=1,PQ=,OQ=2,P(2,﹣);同理,當(dāng)點M在OB上運動時,即3≤t≤4時,∵△BDP是等邊三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=t﹣3,NB=t﹣3+﹣1=t﹣4+,tan∠NBD=,=,解得t=3﹣,經(jīng)檢驗t=3﹣是此方程的解,t=3﹣(不符合題意,舍).故P(2,﹣).【點睛】考查了二次函數(shù)綜合題,涉及的知識點有:待定系數(shù)法,勾股定理,等腰直角三角形的性質(zhì),等邊三角形的性質(zhì),三角函數(shù),分類思想的運用,方程思想的運用,綜合性較強,有一定的難度.20、(1);(2),;(3)【解析】試題分析:(1)根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征易得k=2;(2)作BH⊥AD于H,如圖1,根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征確定B點坐標(biāo)為(1,2),則AH=2﹣1,BH=2﹣1,可判斷△ABH為等腰直角三角形,所以∠BAH=45°,得到∠DAC=∠BAC﹣∠BAH=30°,根據(jù)特殊角的三角函數(shù)值得tan∠DAC=;由于AD⊥y軸,則OD=1,AD=2,然后在Rt△OAD中利用正切的定義可計算出CD=2,易得C點坐標(biāo)為(0,﹣1),于是可根據(jù)待定系數(shù)法求出直線AC的解析式為y=x﹣1;(3)利用M點在反比例函數(shù)圖象上,可設(shè)M點坐標(biāo)為(t,)(0<t<2),由于直線l⊥x軸,與AC相交于點N,得到N點的橫坐標(biāo)為t,利用一次函數(shù)圖象上點的坐標(biāo)特征得到N點坐標(biāo)為(t,t﹣1),則MN=﹣t+1,根據(jù)三角形面積公式得到S△CMN=?t?(﹣t+1),再進(jìn)行配方得到S=﹣(t﹣)2+(0<t<2),最后根據(jù)二次函數(shù)的最值問題求解.試題解析:(1)把A(2,1)代入y=,得k=2×1=2;(2)作BH⊥AD于H,如圖1,把B(1,a)代入反比例函數(shù)解析式y(tǒng)=,得a=2,∴B點坐標(biāo)為(1,2),∴AH=2﹣1,BH=2﹣1,∴△ABH為等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=;∵AD⊥y軸,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C點坐標(biāo)為(0,﹣1),設(shè)直線AC的解析式為y=kx+b,把A(2,1)、C(0,﹣1)代入得,解得,∴直線AC的解析式為y=x﹣1;(3)設(shè)M點坐標(biāo)為(t,)(0<t<2),∵直線l⊥x軸,與AC相交于點N,∴N點的橫坐標(biāo)為t,∴N點坐標(biāo)為(t,t﹣1),∴MN=﹣(t﹣1)=﹣t+1,∴S△CMN=?t?(﹣t+1)=﹣t2+t+=﹣(t﹣)2+(0<t<2),∵a=﹣<0,∴當(dāng)t=時,S有最大值,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論