版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022屆安徽六安市葉集區(qū)觀山中學中考考前最后一卷數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.半徑為3的圓中,一條弦長為4,則圓心到這條弦的距離是()A.3 B.4 C. D.2.如圖,在⊙O中,弦AC∥半徑OB,∠BOC=50°,則∠OAB的度數為()A.25° B.50° C.60° D.30°3.如圖,在等腰直角三角形ABC中,∠C=90°,D為BC的中點,將△ABC折疊,使點A與點D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.4.已知:如圖,在扇形中,,半徑,將扇形沿過點的直線折疊,點恰好落在弧上的點處,折痕交于點,則弧的長為()A. B. C. D.5.某一公司共有51名員工(包括經理),經理的工資高于其他員工的工資,今年經理的工資從去年的200000元增加到225000元,而其他員工的工資同去年一樣,這樣,這家公司所有員工今年工資的平均數和中位數與去年相比將會()A.平均數和中位數不變 B.平均數增加,中位數不變C.平均數不變,中位數增加 D.平均數和中位數都增大6.如圖,“趙爽弦圖”是由四個全等的直角三角形與中間一個小正方形拼成的一個大正方形,大正方形與小正方形的邊長之比是2∶1,若隨機在大正方形及其內部區(qū)域投針,則針孔扎到小正方形(陰影部分)的概率是()A.0.2 B.0.25 C.0.4 D.0.57.下列計算正確的是()A.(﹣8)﹣8=0 B.3+3=33 C.(﹣3b)2=9b2 D.a6÷a2=a38.若正比例函數y=kx的圖象上一點(除原點外)到x軸的距離與到y(tǒng)軸的距離之比為3,且y值隨著x值的增大而減小,則k的值為()A.﹣ B.﹣3 C. D.39.老師隨機抽查了學生讀課外書冊數的情況,繪制成條形圖和不完整的扇形圖,其中條形圖被墨跡遮蓋了一部分,則條形圖中被遮蓋的數是()A.5 B.9 C.15 D.2210.通州區(qū)大運河森林公園占地面積10700畝,是北京規(guī)模最大的濱河森林公園,將10700用科學記數法表示為()A.10.7×104 B.1.07×105 C.1.7×104 D.1.07×104二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,兩個三角形相似,AD=2,AE=3,EC=1,則BD=_____.12.計算:()0﹣=_____.13.如圖所示,在平面直角坐標系中,已知反比例函數y=(x>0)的圖象和菱形OABC,且OB=4,tan∠BOC=,若將菱形向右平移,菱形的兩個頂點B、C恰好同時落在反比例函數的圖象上,則反比例函數的解析式是______________.14.在平面直角坐標系中,點P到軸的距離為1,到軸的距離為2.寫出一個符合條件的點P的坐標________________.15.如圖,在扇形AOB中,∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,當正方形CDEF的邊長為4時,陰影部分的面積為_____.16.當2≤x≤5時,二次函數y=﹣(x﹣1)2+2的最大值為_____.三、解答題(共8題,共72分)17.(8分)如圖,已知平行四邊形ABCD,點M、N分別是邊DC、BC的中點,設=,=,求向量關于、的分解式.18.(8分)如圖,在△ABC中,點D,E分別在邊AB,AC上,∠AED=∠B,射線AG分別交線段DE,BC于點F,G,且.求證:△ADF∽△ACG;若,求的值.19.(8分)如圖,在△ABC中,以AB為直徑的⊙O交BC于點D,交CA的延長線于點E,過點D作DH⊥AC于點H,且DH是⊙O的切線,連接DE交AB于點F.(1)求證:DC=DE;(2)若AE=1,,求⊙O的半徑.20.(8分)霧霾天氣嚴重影響市民的生活質量。在今年寒假期間,某校九年級一班的綜合實踐小組學生對“霧霾天氣的主要成因”隨機調查了所在城市部分市民,并對調查結果進行了整理,繪制了下圖所示的不完整的統(tǒng)計圖表:組別霧霾天氣的主要成因百分比A工業(yè)污染45%B汽車尾氣排放C爐煙氣排放15%D其他(濫砍濫伐等)請根據統(tǒng)計圖表回答下列問題:本次被調查的市民共有多少人?并求和的值;請補全條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中扇形區(qū)域所對應的圓心角的度數;若該市有100萬人口,請估計市民認為“工業(yè)污染和汽車尾氣排放是霧霾天氣主要成因”的人數.21.(8分)如圖所示是一幢住房的主視圖,已知:,房子前后坡度相等,米,米,設后房檐到地面的高度為米,前房檐到地面的高度米,求的值.22.(10分)九(1)班針對“你最喜愛的課外活動項目”對全班學生進行調查(每名學生分別選一個活動項目),并根據調查結果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.根據以上信息解決下列問題:,;扇形統(tǒng)計圖中機器人項目所對應扇形的圓心角度數為°;從選航模項目的4名學生中隨機選取2名學生參加學校航模興趣小組訓練,請用列舉法(畫樹狀圖或列表)求所選取的2名學生中恰好有1名男生、1名女生的概率.23.(12分)學校決定在學生中開設:A、實心球;B、立定跳遠;C、跳繩;D、跑步四種活動項目.為了了解學生對四種項目的喜歡情況,隨機抽取了部分學生進行調查,并將調查結果繪制成如圖①②的統(tǒng)計圖,請結合圖中的信息解答下列問題:(1)在這項調查中,共調查了多少名學生?(2)請計算本項調查中喜歡“立定跳遠”的學生人數和所占百分比,并將兩個統(tǒng)計圖補充完整.(3)若調查到喜歡“跳繩”的5名學生中有2名男生,3名女生,現從這5名學生中任意抽取2名學生,請用畫樹狀圖或列表法求出剛好抽到不同性別學生的概率.24.如圖,矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線經過A、C兩點,與AB邊交于點D.(1)求拋物線的函數表達式;(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S.①求S關于m的函數表達式,并求出m為何值時,S取得最大值;②當S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】如圖所示:過點O作OD⊥AB于點D,∵OB=3,AB=4,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD=.故選C.2、A【解析】如圖,∵∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠OBA=∠BAC=25°,∵OA=OB,∴∠OAB=∠OBA=25°.故選A.3、A【解析】∵△DEF是△AEF翻折而成,
∴△DEF≌△AEF,∠A=∠EDF,
∵△ABC是等腰直角三角形,
∴∠EDF=45°,由三角形外角性質得∠CDF+45°=∠BED+45°,
∴∠BED=∠CDF,
設CD=1,CF=x,則CA=CB=2,
∴DF=FA=2-x,
∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,
解得x=,
∴sin∠BED=sin∠CDF=.
故選:A.4、D【解析】
如圖,連接OD.根據折疊的性質、圓的性質推知△ODB是等邊三角形,則易求∠AOD=110°-∠DOB=50°;然后由弧長公式弧長的公式來求的長【詳解】解:如圖,連接OD.解:如圖,連接OD.
根據折疊的性質知,OB=DB.
又∵OD=OB,
∴OD=OB=DB,即△ODB是等邊三角形,
∴∠DOB=60°.
∵∠AOB=110°,
∴∠AOD=∠AOB-∠DOB=50°,
∴的長為=5π.
故選D.【點睛】本題考查了弧長的計算,翻折變換(折疊問題).折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.所以由折疊的性質推知△ODB是等邊三角形是解答此題的關鍵之處.5、B【解析】
本題考查統(tǒng)計的有關知識,找中位數要把數據按從小到大的順序排列,位于最中間的一個數或兩個數的平均數為中位數,平均數是指在一組數據中所有數據之和再除以數據的個數.【詳解】解:設這家公司除經理外50名員工的工資和為a元,則這家公司所有員工去年工資的平均數是元,今年工資的平均數是元,顯然;
由于這51個數據按從小到大的順序排列的次序完全沒有變化,所以中位數不變.
故選B.【點睛】本題主要考查了平均數,中位數的概念,要掌握這些基本概念才能熟練解題.同時注意到個別數據對平均數的影響較大,而對中位數和眾數沒影響.6、B【解析】
設大正方形邊長為2,則小正方形邊長為1,所以大正方形面積為4,小正方形面積為1,則針孔扎到小正方形(陰影部分)的概率是0.1.【詳解】解:設大正方形邊長為2,則小正方形邊長為1,因為面積比是相似比的平方,
所以大正方形面積為4,小正方形面積為1,
則針孔扎到小正方形(陰影部分)的概率是;故選:B.【點睛】本題考查了概率公式:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率.7、C【解析】選項A,原式=-16;選項B,不能夠合并;選項C,原式=9b2;選項D,原式=8、B【解析】
設該點的坐標為(a,b),則|b|=1|a|,利用一次函數圖象上的點的坐標特征可得出k=±1,再利用正比例函數的性質可得出k=-1,此題得解.【詳解】設該點的坐標為(a,b),則|b|=1|a|,∵點(a,b)在正比例函數y=kx的圖象上,∴k=±1.又∵y值隨著x值的增大而減小,∴k=﹣1.故選:B.【點睛】本題考查了一次函數圖象上點的坐標特征以及正比例函數的性質,利用一次函數圖象上點的坐標特征,找出k=±1是解題的關鍵.9、B【解析】
條形統(tǒng)計圖是用線段長度表示數據,根據數量的多少畫成長短不同的矩形直條,然后按順序把這些直條排列起來.扇形統(tǒng)計圖是用整個圓表示總數用圓內各個扇形的大小表示各部分數量占總數的百分數.通過扇形統(tǒng)計圖可以很清楚地表示出各部分數量同總數之間的關系.用整個圓的面積表示總數(單位1),用圓的扇形面積表示各部分占總數的百分數.【詳解】課外書總人數:6÷25%=24(人),看5冊的人數:24﹣5﹣6﹣4=9(人),故選B.【點睛】本題考查了統(tǒng)計圖與概率,熟練掌握條形統(tǒng)計圖與扇形統(tǒng)計圖是解題的關鍵.10、D【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:10700=1.07×104,
故選:D.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
根據相似三角形的對應邊的比相等列出比例式,計算即可.【詳解】∵△ADE∽△ACB,∴=,即=,解得:BD=1.故答案為1.【點睛】本題考查的是相似三角形的性質,掌握相似三角形的對應邊的比相等是解題的關鍵.12、-1【解析】
本題需要運用零次冪的運算法則、立方根的運算法則進行計算.【詳解】由分析可得:()0﹣=1-2=﹣1.【點睛】熟練運用零次冪的運算法則、立方根的運算法則是本題解題的關鍵.13、【解析】解:連接AC,交y軸于D.∵四邊形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD.∵OB=4,tan∠BOC=,∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2).設菱形平移后B的坐標是(x,4),C的坐標是(1+x,2).∵B、C落在反比例函數的圖象上,∴k=4x=2(1+x),解得:x=1,即菱形平移后B的坐標是(1,4),代入反比例函數的解析式得:k=1×4=4,即B、C落在反比例函數的圖象上,菱形的平移距離是1,反比例函數的解析式是y=.故答案為y=.點睛:本題考查了菱形的性質,用待定系數法求反比例函數的解析式,平移的性質的應用,主要考查學生的計算能力.14、(寫出一個即可)【解析】【分析】根據點到x軸的距離即點的縱坐標的絕對值,點到y(tǒng)軸的距離即點的橫坐標的絕對值,進行求解即可.【詳解】設P(x,y),根據題意,得|x|=2,|y|=1,即x=±2,y=±1,則點P的坐標有(2,1),(2,-1),(-2,1),(2,-1),故答案為:(2,1),(2,-1),(-2,1),(2,-1)(寫出一個即可).【點睛】本題考查了點的坐標和點到坐標軸的距離之間的關系.熟知點到x軸的距離即點的縱坐標的絕對值,點到y(tǒng)軸的距離即點的橫坐標的絕對值是解題的關鍵.15、4π﹣1【解析】分析:連結OC,根據勾股定理可求OC的長,根據題意可得出陰影部分的面積=扇形BOC的面積-三角形ODC的面積,依此列式計算即可求解.詳解:連接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是的中點,
∴∠COD=45°,
∴OC=CD=4,
∴陰影部分的面積=扇形BOC的面積-三角形ODC的面積
==4π-1.故答案是:4π-1.點睛:考查了正方形的性質和扇形面積的計算,解題的關鍵是得到扇形半徑的長度.16、1.【解析】
先根據二次函數的圖象和性質判斷出2≤x≤5時的增減性,然后再找最大值即可.【詳解】對稱軸為∵a=﹣1<0,∴當x>1時,y隨x的增大而減小,∴當x=2時,二次函數y=﹣(x﹣1)2+2的最大值為1,故答案為:1.【點睛】本題主要考查二次函數在一定范圍內的最大值,掌握二次函數的圖象和性質是解題的關鍵.三、解答題(共8題,共72分)17、答案見解析【解析】試題分析:連接BD,由已知可得MN是△BCD的中位線,則MN=BD,根據向量減法表示出BD即可得.試題解析:連接BD,∵點M、N分別是邊DC、BC的中點,∴MN是△BCD的中位線,∴MN∥BD,MN=BD,∵,∴.18、(1)證明見解析;(2)1.【解析】(1)欲證明△ADF∽△ACG,由可知,只要證明∠ADF=∠C即可.(2)利用相似三角形的性質得到,由此即可證明.【解答】(1)證明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴,又∵,∴,∴1.19、(1)見解析;(2).【解析】
(1)連接OD,由DH⊥AC,DH是⊙O的切線,然后由平行線的判定與性質可證∠C=∠ODB,由圓周角定理可得∠OBD=∠DEC,進而∠C=∠DEC,可證結論成立;(2)證明△OFD∽△AFE,根據相似三角形的性質即可求出圓的半徑.【詳解】(1)證明:連接OD,由題意得:DH⊥AC,由且DH是⊙O的切線,∠ODH=∠DHA=90°,∴∠ODH=∠DHA=90°,∴OD∥CA,∴∠C=∠ODB,∵OD=OB,∴∠OBD=∠ODB,∴∠OBD=∠C,∵∠OBD=∠DEC,∴∠C=∠DEC,∴DC=DE;(2)解:由(1)可知:OD∥AC,∴∠ODF=∠AEF,∵∠OFD=∠AFE,∴△OFD∽△AFE,∴,∵AE=1,∴OD=,∴⊙O的半徑為.【點睛】本題考查了切線的性質,平行線的判定與性質,等腰三角形的性質與判定,圓周角定理的推論,相似三角形的判定與性質,難度中等,熟練掌握各知識點是解答本題的關鍵.20、(1)200人,;(2)見解析,;(3)75萬人.【解析】
(1)用A類的人數除以所占的百分比求出被調查的市民數,再用B類的人數除以總人數得出B類所占的百分比m,繼而求出n的值即可;(2)求出C、D兩組人數,從而可補全條形統(tǒng)計圖,用360度乘以n即可得扇形區(qū)域所對應的圓心角的度數;(3)用該市的總人數乘以持有A、B兩類所占的百分比的和即可.【詳解】(1)本次被調查的市民共有:(人),∴,;(2)組的人數是(人)、組的人數是(人),∴;補全的條形統(tǒng)計圖如下圖所示:扇形區(qū)域所對應的圓心角的度數為:;(3)(萬),∴若該市有100萬人口,市民認為“工業(yè)污染和汽車尾氣排放是霧霾天氣主要成因”的人數約為75萬人.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖、統(tǒng)計表,讀懂圖形,找出必要的信息是解題的關鍵.21、【解析】
過A作一條水平線,分別過B,C兩點作這條水平線的垂線,垂足分別為D,E,由后坡度AB與前坡度AC相等知∠BAD=∠CAE=30°,從而得出BD=2、CE=3,據此可得.【詳解】解:過A作一條水平線,分別過B,C兩點作這條水平線的垂線,垂足分別為D,E,
∵房子后坡度AB與前坡度AC相等,
∴∠BAD=∠CAE,
∵∠BAC=120°,
∴∠BAD=∠CAE=30°,
在直角△ABD中,AB=4米,
∴BD=2米,
在直角△ACE中,AC=6米,
∴CE=3米,
∴a-b=1米.【點睛】本題考查了解直角三角形的應用-坡度坡角問題,解題的關鍵是根據題意構建直角三角形,并熟練掌握坡度坡角的概念.22、(1),;(2);(3).【解析】試題分析:(1)利用航模小組先求出數據總數,再求出n.(2)小組所占圓心角=;(3)列表格求概率.試題解析:(1);(2);(3)將選航模項目的名男生編上號碼,將名女生編上號碼.用表格列出所有可能出現的結果:由表格可知,共有種可能出現的結果,并且它們都是第可能的,其中“名男生、名女生”有種可能.(名男生、名女生).(如用樹狀圖,酌情相應給分)考點:統(tǒng)計與概率的綜合運用.23、(1)150;(2)詳見解析;(3).【解析】
(1)用A類人數除以它所占的百分比得到調查的總人數;(2)用總人數分別減去A、C、D得到B類人數,再計算出它所占的百分比,然后補全兩個統(tǒng)計圖;(3)畫樹狀圖展示所有20種等可能的結果數,再找出剛好抽到不同性別學生的結果數,然后利用概率公式求解.【詳解】解:(1)15÷10%=150,所以共調查了150名學生;(2)喜歡“立定跳遠”學生的人數為150﹣15﹣60﹣30=45,喜歡“立定跳遠”的學
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)院食堂管理制度
- 老年療養(yǎng)院協(xié)議模板
- 公司債券發(fā)行專項法律服務合同 發(fā)行企業(yè)債專項法律服務合同
- 我國股票交易市場規(guī)制體系研究
- 車間承包經營合同書
- 體育賽事設備租賃合同
- 室外石材工程冬季施工方案
- 不動產抵押擔保合同模板
- 《養(yǎng)老福利院成本控制計劃方案》
- 2024至2030年中國女性內外生殖器模型行業(yè)投資前景及策略咨詢研究報告
- 家具制造業(yè)生產管理制度大全
- 金融科技創(chuàng)新對金融服務的影響研究
- 2023版思想道德與法治專題6 遵守道德規(guī)范 錘煉道德品格 第2講 吸收借鑒優(yōu)秀道德成果
- 子宮破裂的護理查房201711
- 停送電工作票制度
- 水利水電工程施工技術-鋼筋工程
- 中醫(yī)內科汗證
- 學校食堂食品安全風險清單
- YY/T 0612-2022一次性使用人體動脈血樣采集器(動脈血氣針)
- JJG 693-2011可燃氣體檢測報警器
- GB/T 9441-2009球墨鑄鐵金相檢驗
評論
0/150
提交評論