版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022屆江蘇省蘇南五市聯(lián)考中考數(shù)學四模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.在3,0,-2,-2四個數(shù)中,最小的數(shù)是()A.3 B.0 C.-2 D.-22.如圖,兩張完全相同的正六邊形紙片邊長為重合在一起,下面一張保持不動,將上面一張紙片沿水平方向向左平移a個單位長度,則空白部分與陰影部分面積之比是A.5:2 B.3:2 C.3:1 D.2:13.下列各式計算正確的是()A.a(chǎn)4?a3=a12 B.3a?4a=12a C.(a3)4=a12 D.a(chǎn)12÷a3=a44.若關于x的一元二次方程x(x+2)=m總有兩個不相等的實數(shù)根,則()A.m<﹣1 B.m>1 C.m>﹣1 D.m<15.下列各數(shù)中負數(shù)是()A.﹣(﹣2)B.﹣|﹣2|C.(﹣2)2D.﹣(﹣2)36.在平面直角坐標系中,若點A(a,-b)在第一象限內(nèi),則點B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.估計的值在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間8.計算的正確結果是()A. B.- C.1 D.﹣19.在一個不透明的袋子中裝有除顏色外其余均相同的m個小球,其中5個黑球,從袋中隨機摸出一球,記下其顏色,這稱為依次摸球試驗,之后把它放回袋中,攪勻后,再繼續(xù)摸出一球.以下是利用計算機模擬的摸球試驗次數(shù)與摸出黑球次數(shù)的列表:摸球試驗次數(shù)100100050001000050000100000摸出黑球次數(shù)46487250650082499650007根據(jù)列表,可以估計出m的值是()A.5 B.10 C.15 D.2010.下列說法正確的是()A.一個游戲的中獎概率是110B.為了解全國中學生的心理健康情況,應該采用普查的方式C.一組數(shù)據(jù)8,8,7,10,6,8,9的眾數(shù)和中位數(shù)都是8D.若甲組數(shù)據(jù)的方差S="0.01",乙組數(shù)據(jù)的方差s=0.1,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等.若等腰直角三角形ABC的直角頂點C在l1上,另兩個頂點A、B分別在l3、l2上,則tanα的值是______.12.已知△ABC中,∠C=90°,AB=9,,把△ABC繞著點C旋轉,使得點A落在點A′,點B落在點B′.若點A′在邊AB上,則點B、B′的距離為_____.13.如圖,在平面直角坐標系中,二次函數(shù)y=ax2+c(a≠0)的圖象過正方形ABOC的三個頂點A,B,C,則ac的值是________.14.如圖,在半徑為2cm,圓心角為90°的扇形OAB中,分別以OA、OB為直徑作半圓,則圖中陰影部分的面積為_____.15.如圖,在每個小正方形邊長為的網(wǎng)格中,的頂點,,均在格點上,為邊上的一點.線段的值為______________;在如圖所示的網(wǎng)格中,是的角平分線,在上求一點,使的值最小,請用無刻度的直尺,畫出和點,并簡要說明和點的位置是如何找到的(不要求證明)___________.16.有5張背面看上去無差別的撲克牌,正面分別寫著5,6,7,8,9,洗勻后正面向下放在桌子上,從中隨機抽取2張,抽出的卡片上的數(shù)字恰好是兩個連續(xù)整數(shù)的概率是__.三、解答題(共8題,共72分)17.(8分)已知,拋物線y=﹣x2+bx+c經(jīng)過點A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)設點M在拋物線的對稱軸上,當△MAC是以AC為直角邊的直角三角形時,求點M的坐標.18.(8分)(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點,連接BE并延長與AD的延長線相較于點F.(1)求證:四邊形BDFC是平行四邊形;(2)若△BCD是等腰三角形,求四邊形BDFC的面積.19.(8分)我市在黨中央實施“精準扶貧”政策的號召下,大力開展科技扶貧工作,幫助農(nóng)民組建農(nóng)副產(chǎn)品銷售公司,某農(nóng)副產(chǎn)品的年產(chǎn)量不超過100萬件,該產(chǎn)品的生產(chǎn)費用y(萬元)與年產(chǎn)量x(萬件)之間的函數(shù)圖象是頂點為原點的拋物線的一部分(如圖①所示);該產(chǎn)品的銷售單價z(元/件)與年銷售量x(萬件)之間的函數(shù)圖象是如圖②所示的一條線段,生產(chǎn)出的產(chǎn)品都能在當年銷售完,達到產(chǎn)銷平衡,所獲毛利潤為W萬元.(毛利潤=銷售額﹣生產(chǎn)費用)(1)請直接寫出y與x以及z與x之間的函數(shù)關系式;(寫出自變量x的取值范圍)(2)求W與x之間的函數(shù)關系式;(寫出自變量x的取值范圍);并求年產(chǎn)量多少萬件時,所獲毛利潤最大?最大毛利潤是多少?(3)由于受資金的影響,今年投入生產(chǎn)的費用不會超過360萬元,今年最多可獲得多少萬元的毛利潤?20.(8分)先化簡后求值:已知:x=﹣2,求的值.21.(8分)如圖,二次函數(shù)y=﹣+mx+4﹣m的圖象與x軸交于A、B兩點(A在B的左側),與),軸交于點C.拋物線的對稱軸是直線x=﹣2,D是拋物線的頂點.(1)求二次函數(shù)的表達式;(2)當﹣<x<1時,請求出y的取值范圍;(3)連接AD,線段OC上有一點E,點E關于直線x=﹣2的對稱點E'恰好在線段AD上,求點E的坐標.22.(10分)為改善生態(tài)環(huán)境,防止水土流失,某村計劃在荒坡上種1000棵樹.由于青年志愿者的支援,每天比原計劃多種25%,結果提前5天完成任務,原計劃每天種多少棵樹?23.(12分)如圖,在ABCD中,點E是AB邊的中點,DE與CB的延長線交于點F(1)求證:△ADE≌△BFE;(2)若DF平分∠ADC,連接CE,試判斷CE和DF的位置關系,并說明理由.24.已知一次函數(shù)y=x+1與拋物線y=x2+bx+c交A(m,9),B(0,1)兩點,點C在拋物線上且橫坐標為1.(1)寫出拋物線的函數(shù)表達式;(2)判斷△ABC的形狀,并證明你的結論;(3)平面內(nèi)是否存在點Q在直線AB、BC、AC距離相等,如果存在,請直接寫出所有符合條件的Q的坐標,如果不存在,說說你的理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據(jù)比較實數(shù)大小的方法進行比較即可.根據(jù)正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而小即可求解.【詳解】因為正數(shù)大于負數(shù),兩個負數(shù)比較大小,絕對值較大的數(shù)反而較小,所以-2<-2所以最小的數(shù)是-2,故選C.【點睛】此題主要考查了實數(shù)的大小的比較,正數(shù)都大于0,負數(shù)都小于0,兩個負數(shù)絕對值大的反而小.2、C【解析】
求出正六邊形和陰影部分的面積即可解決問題;【詳解】解:正六邊形的面積,
陰影部分的面積,
空白部分與陰影部分面積之比是::1,
故選C.【點睛】本題考查正多邊形的性質、平移變換等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考??碱}型.3、C【解析】
根據(jù)同底數(shù)冪的乘法,可判斷A、B,根據(jù)冪的乘方,可判斷C,根據(jù)同底數(shù)冪的除法,可判斷D.【詳解】A.a(chǎn)4?a3=a7,故A錯誤;B.3a?4a=12a2,故B錯誤;C.(a3)4=a12,故C正確;D.a(chǎn)12÷a3=a9,故D錯誤.故選C.【點睛】本題考查了同底數(shù)冪的除法,同底數(shù)冪的除法底數(shù)不變指數(shù)相減是解題的關鍵.4、C【解析】
將關于x的一元二次方程化成標準形式,然后利用Δ>0,即得m的取值范圍.【詳解】因為方程是關于x的一元二次方程方程,所以可得,Δ=4+4m>0,解得m>﹣1,故選D.【點睛】本題熟練掌握一元二次方程的基本概念是本題的解題關鍵.5、B【解析】
首先利用相反數(shù),絕對值的意義,乘方計算方法計算化簡,進一步利用負數(shù)的意義判定即可.【詳解】A、-(-2)=2,是正數(shù);B、-|-2|=-2,是負數(shù);C、(-2)2=4,是正數(shù);D、-(-2)3=8,是正數(shù).故選B.【點睛】此題考查負數(shù)的意義,利用相反數(shù),絕對值的意義,乘方計算方法計算化簡是解決問題的關鍵.6、D【解析】
先根據(jù)第一象限內(nèi)的點的坐標特征判斷出a、b的符號,進而判斷點B所在的象限即可.【詳解】∵點A(a,-b)在第一象限內(nèi),∴a>0,-b>0,∴b<0,∴點B((a,b)在第四象限,故選D.【點睛】本題考查了點的坐標,解決本題的關鍵是牢記平面直角坐標系中各個象限內(nèi)點的符號特征:第一象限正正,第二象限負正,第三象限負負,第四象限正負.7、D【解析】
尋找小于26的最大平方數(shù)和大于26的最小平方數(shù)即可.【詳解】解:小于26的最大平方數(shù)為25,大于26的最小平方數(shù)為36,故,即:,故選擇D.【點睛】本題考查了二次根式的相關定義.8、D【解析】
根據(jù)有理數(shù)加法的運算方法,求出算式的正確結果是多少即可.【詳解】原式故選:D.【點睛】此題主要考查了有理數(shù)的加法的運算方法,要熟練掌握,解答此題的關鍵是要明確:①同號相加,取相同符號,并把絕對值相加.②絕對值不等的異號加減,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值.互為相反數(shù)的兩個數(shù)相加得1.③一個數(shù)同1相加,仍得這個數(shù).9、B【解析】
由概率公式可知摸出黑球的概率為5m,分析表格數(shù)據(jù)可知摸出黑球次數(shù)【詳解】解:分析表格數(shù)據(jù)可知摸出黑球次數(shù)摸球實驗次數(shù)的值總是在0.5左右,則由題意可得5故選擇B.【點睛】本題考查了概率公式的應用.10、C【解析】
眾數(shù),中位數(shù),方差等概念分析即可.【詳解】A、中獎是偶然現(xiàn)象,買再多也不一定中獎,故是錯誤的;B、全國中學生人口多,只需抽樣調(diào)查就行了,故是錯誤的;C、這組數(shù)據(jù)的眾數(shù)和中位數(shù)都是8,故是正確的;D、方差越小越穩(wěn)定,甲組數(shù)據(jù)更穩(wěn)定,故是錯誤.故選C.【點睛】考核知識點:眾數(shù),中位數(shù),方差.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】如圖,分別過點A,B作AE⊥,BF⊥,BD⊥,垂足分別為E,F(xiàn),D.∵△ABC為等腰直角三角形,∴AC=BC,∠ACB=90°,∴∠ACE+∠BCF=90°.∵AE⊥,BF⊥∴∠CAE+∠ACE=90°,∠CBF+∠BCF=90°,∴∠CAE=∠BCF,∠ACE=∠CBF.∵∠CAE=∠BCF,AC=BC,∠ACE=∠CBF,∴△ACE≌△CBF,∴CE=BF,AE=CF.設平行線間距離為d=l,則CE=BF=BD=1,AE=CF=2,AD=EF=CE+CF=3,∴tanα=tan∠BAD==.點睛:分別過點A,B作AE⊥,BF⊥,BD⊥,垂足分別為E,F(xiàn),D,可根據(jù)ASA證明△ACE≌△CBF,設平行線間距離為d=1,進而求出AD、BD的值;本題考查了全等三角形的判定和銳角三角函數(shù),解題的關鍵是合理添加輔助線構造全等三角形;12、4【解析】
過點C作CH⊥AB于H,利用解直角三角形的知識,分別求出AH、AC、BC的值,進而利用三線合一的性質得出AA'的值,然后利用旋轉的性質可判定△ACA'∽△BCB',繼而利用相似三角形的對應邊成比例的性質可得出BB'的值.【詳解】解:過點C作CH⊥AB于H,
∵在Rt△ABC中,∠C=90,cosA=,
∴AC=AB?cosA=6,BC=3,
在Rt△ACH中,AC=6,cosA=,
∴AH=AC?cosA=4,
由旋轉的性質得,AC=A'C,BC=B'C,
∴△ACA'是等腰三角形,因此H也是AA'中點,
∴AA'=2AH=8,
又∵△BCB'和△ACA'都為等腰三角形,且頂角∠ACA'和∠BCB'都是旋轉角,
∴∠ACA'=∠BCB',
∴△ACA'∽△BCB',∴即,解得:BB'=4.故答案為:4.【點睛】此題考查了解直角三角形、旋轉的性質、勾股定理、等腰三角形的性質、相似三角形的判定與性質,解答本題的關鍵是得出△ACA'∽△BCB'.13、-1.【解析】
設正方形的對角線OA長為1m,根據(jù)正方形的性質則可得出B、C坐標,代入二次函數(shù)y=ax1+c中,即可求出a和c,從而求積.【詳解】設正方形的對角線OA長為1m,則B(﹣m,m),C(m,m),A(0,1m);把A,C的坐標代入解析式可得:c=1m①,am1+c=m②,①代入②得:am1+1m=m,解得:a=-,則ac=-1m=-1.考點:二次函數(shù)綜合題.14、﹣1.【解析】試題分析:假設出扇形半徑,再表示出半圓面積,以及扇形面積,進而即可表示出兩部分P,Q面積相等.連接AB,OD,根據(jù)兩半圓的直徑相等可知∠AOD=∠BOD=45°,故可得出綠色部分的面積=S△AOD,利用陰影部分Q的面積為:S扇形AOB﹣S半圓﹣S綠色,故可得出結論.解:∵扇形OAB的圓心角為90°,扇形半徑為2,∴扇形面積為:=π(cm2),半圓面積為:×π×12=(cm2),∴SQ+SM=SM+SP=(cm2),∴SQ=SP,連接AB,OD,∵兩半圓的直徑相等,∴∠AOD=∠BOD=45°,∴S綠色=S△AOD=×2×1=1(cm2),∴陰影部分Q的面積為:S扇形AOB﹣S半圓﹣S綠色=π﹣﹣1=﹣1(cm2).故答案為﹣1.考點:扇形面積的計算.15、(Ⅰ)(Ⅱ)如圖,取格點、,連接與交于點,連接與交于點.【解析】
(Ⅰ)根據(jù)勾股定理進行計算即可.(Ⅱ)根據(jù)菱形的每一條對角線平分每一組對角,構造邊長為1的菱形ABEC,連接AE交BC于M,即可得出是的角平分線,再取點F使AF=1,則根據(jù)等腰三角形的性質得出點C與F關于AM對稱,連接DF交AM于點P,此時的值最?。驹斀狻浚á瘢└鶕?jù)勾股定理得AC=;故答案為:1.(Ⅱ)如圖,如圖,取格點、,連接與交于點,連接與交于點,則點P即為所求.說明:構造邊長為1的菱形ABEC,連接AE交BC于M,則AM即為所求的的角平分線,在AB上取點F,使AF=AC=1,則AM垂直平分CF,點C與F關于AM對稱,連接DF交AM于點P,則點P即為所求.【點睛】本題考查作圖-應用與設計,涉及勾股定理、菱形的判定和性質、幾何變換軸對稱—最短距離等知識,解題的關鍵是靈活運用所學知識解決問題,學會利用數(shù)形結合的思想解決問題.16、【解析】
列表得出所有等可能的情況數(shù),找出恰好是兩個連續(xù)整數(shù)的情況數(shù),即可求出所求概率.【詳解】解:列表如下:567895﹣﹣﹣(6、5)(7、5)(8、5)(9、5)6(5、6)﹣﹣﹣(7、6)(8、6)(9、6)7(5、7)(6、7)﹣﹣﹣(8、7)(9、7)8(5、8)(6、8)(7、8)﹣﹣﹣(9、8)9(5、9)(6、9)(7、9)(8、9)﹣﹣﹣所有等可能的情況有20種,其中恰好是兩個連續(xù)整數(shù)的情況有8種,則P(恰好是兩個連續(xù)整數(shù))=故答案為.【點睛】此題考查了列表法與樹狀圖法,概率=所求情況數(shù)與總情況數(shù)之比.三、解答題(共8題,共72分)17、(1)y=﹣x2+2x+1;(2)當△MAC是直角三角形時,點M的坐標為(1,)或(1,﹣).【解析】
(1)由點A、C的坐標,利用待定系數(shù)法即可求出拋物線的解析式;(2)設點M的坐標為(1,m),則CM=,AC=,AM=,分∠ACM=90°和∠CAM=90°兩種情況,利用勾股定理可得出關于m的方程,解之可得出m的值,進而即可得出點M的坐標.【詳解】(1)將A(﹣1,0)、C(0,1)代入y=﹣x2+bx+c中,得:,解得:,∴拋物線的解析式為y=﹣x2+2x+1.(2)∵y=﹣x2+2x+1=﹣(x﹣1)2+4,設點M的坐標為(1,m),則CM=,AC==,AM=.分兩種情況考慮:①當∠ACM=90°時,有AM2=AC2+CM2,即4+m2=10+1+(m﹣1)2,解得:m=,∴點M的坐標為(1,);②當∠CAM=90°時,有CM2=AM2+AC2,即1+(m﹣1)2=4+m2+10,解得:m=﹣,∴點M的坐標為(1,﹣).綜上所述:當△MAC是直角三角形時,點M的坐標為(1,)或(1,﹣).【點睛】本題考查二次函數(shù)的綜合問題,解題的關鍵是掌握待定系數(shù)法求二次函數(shù)解析式、二次函數(shù)圖象的點的坐標特征以及勾股定理等知識點.18、(1)見解析;(2)62或3【解析】試題分析:(1)根據(jù)平行線的性質和中點的性質證明三角形全等,然后根據(jù)對角線互相平分的四邊形是平行四邊形完成證明;(2)由等腰三角形的性質,分三種情況:①BD=BC,②BD=CD,③BC=CD,分別求四邊形的面積.試題解析:(1)證明:∵∠A=∠ABC=90°∴AF∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E是邊CD的中點∴CE=DE∴△BCE≌△FDE(AAS)∴BE=EF∴四邊形BDFC是平行四邊形(2)若△BCD是等腰三角形①若BD=DC在Rt△ABD中,AB=B∴四邊形BDFC的面積為S=22×3=62②若BD=DC過D作BC的垂線,則垂足為BC得中點,不可能;③若BC=DC過D作DG⊥BC,垂足為G在Rt△CDG中,DG=D∴四邊形BDFC的面積為S=35考點:三角形全等,平行四邊形的判定,勾股定理,四邊形的面積19、(1)y=x1.z=﹣x+30(0≤x≤100);(1)年產(chǎn)量為75萬件時毛利潤最大,最大毛利潤為1115萬元;(3)今年最多可獲得毛利潤1080萬元【解析】
(1)利用待定系數(shù)法可求出y與x以及z與x之間的函數(shù)關系式;(1)根據(jù)(1)的表達式及毛利潤=銷售額﹣生產(chǎn)費用,可得出w與x的函數(shù)關系式,再利用配方法求出最值即可;(3)首先求出x的取值范圍,再利用二次函數(shù)增減性得出答案即可.【詳解】(1)圖①可得函數(shù)經(jīng)過點(100,1000),設拋物線的解析式為y=ax1(a≠0),將點(100,1000)代入得:1000=10000a,解得:a=,故y與x之間的關系式為y=x1.圖②可得:函數(shù)經(jīng)過點(0,30)、(100,10),設z=kx+b,則,解得:,故z與x之間的關系式為z=﹣x+30(0≤x≤100);(1)W=zx﹣y=﹣x1+30x﹣x1=﹣x1+30x=﹣(x1﹣150x)=﹣(x﹣75)1+1115,∵﹣<0,∴當x=75時,W有最大值1115,∴年產(chǎn)量為75萬件時毛利潤最大,最大毛利潤為1115萬元;(3)令y=360,得x1=360,解得:x=±60(負值舍去),由圖象可知,當0<y≤360時,0<x≤60,由W=﹣(x﹣75)1+1115的性質可知,當0<x≤60時,W隨x的增大而增大,故當x=60時,W有最大值1080,答:今年最多可獲得毛利潤1080萬元.【點睛】本題主要考查二次函數(shù)的應用以及待定系數(shù)法求一次函數(shù)解析式,注意二次函數(shù)最值的求法,一般用配方法.20、【解析】
先根據(jù)分式混合運算順序和運算法則化簡原式,再將x的值代入計算可得.【詳解】解:原式=1﹣?(÷)=1﹣??=1﹣=,當x=﹣2時,原式===.【點睛】本題主要考查分式的化簡求值,解題的關鍵是熟練掌握分式混合運算順序和運算法則.21、(1)y=﹣x1﹣1x+6;(1)<y<;(3)(0,4).【解析】
(1)利用對稱軸公式求出m的值,即可確定出解析式;(1)根據(jù)x的范圍,利用二次函數(shù)的增減性確定出y的范圍即可;(3)根據(jù)題意確定出D與A坐標,進而求出直線AD解析式,設出E坐標,利用對稱性確定出E坐標即可.【詳解】(1)∵拋物線對稱軸為直線x=﹣1,∴﹣=﹣1,即m=﹣1,則二次函數(shù)解析式為y=﹣x1﹣1x+6;(1)當x=﹣時,y=;當x=1時,y=.∵﹣<x<1位于對稱軸右側,y隨x的增大而減小,∴<y<;(3)當x=﹣1時,y=8,∴頂點D的坐標是(﹣1,8),令y=0,得到:﹣x1﹣1x+6=0,解得:x=﹣6或x=1.∵點A在點B的左側,∴點A坐標為(﹣6,0).設直線AD解析式為y=kx+b,可得:,解得:,即直線AD解析式為y=1x+11.設E(0,n),則有E′(﹣4,n),代入y=1x+11中得:n=4,則點E坐標為(0,4).【點睛】本題考查了拋物線與x軸的交點,以及二次函數(shù)的性質,熟練掌握二次函數(shù)的性質是解答本題的關鍵.22、原計劃每天種樹40棵.【解析】
設原計劃每天種樹x棵,實際每天植樹(1+25%)x棵,根據(jù)實際完成的天數(shù)比計劃少5天為等量關系建立方程求出其解即可.【詳解】設原計劃每天種樹x棵,實際每天植樹(1+25%)x棵,由題意,得?=5,解得:x=40,經(jīng)檢驗,x=40是原方程的解.答:原計劃每天種樹40棵.23、(1)見解析;(1)見解析.【解析】
(1)由全等三角形的判定定理AAS證得結論.(1)由(1)中全等三角形的對應邊相等推知點E是邊DF的中點,∠1=∠1;根據(jù)角平分線的性質、等量代換以及等角對等邊證得DC=FC,則由等腰三角形的“三合一”的性質推知CE⊥DF.【詳解】解:(1)證明:如圖,∵四邊形ABCD是平行四邊形,∴AD∥BC.又∵點F在CB的延長線上,∴AD∥CF.∴∠1=∠1.∵點E是AB邊的中點,∴AE=BE,∵在△ADE與△BFE中,,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如圖,連接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即點E是DF的中點,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.24、(1)y=x2﹣7x+1;(2)△ABC為直角三角形.理由見解析;(3)符合條件的Q的坐標為(4,1),(24,1),(0,﹣7),(0,13).【解析】
(1)先利用一次函數(shù)解析式得到A(8,9),然后利用待定系數(shù)法求拋物線解析式;(2)先利用拋物線解析式確定C(1,﹣5),作AM⊥y軸于M,CN⊥y軸于N,如圖,證明△ABM和△BNC都是等腰直角三角形得到∠MBA=45°,∠NBC=45°,AB=8,BN=1,從而得到∠ABC=90°,所以△ABC為直角三角形;(3)利用勾股定理計算出AC=10,根據(jù)直角三角形內(nèi)切圓半徑的計算公式得到Rt△ABC的內(nèi)切圓的半
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版建筑節(jié)能技術與產(chǎn)品推廣合同3篇
- 2025版電梯安全檢測與定期維保服務合同范本2篇
- 2025版影視后期配音與音效制作服務合同范本3篇
- 2025版食品安全保障標準保證擔保合同3篇
- 2025年度小額貸款公司借款合同糾紛起訴書模板3篇
- 2025年度供暖設備維修保養(yǎng)工程合同3篇
- 二零二五年化工設備銷售與安全操作規(guī)程合同3篇
- 二零二五年實驗室租賃合同集錦2篇
- 2025版建筑行業(yè)特殊材料安全運輸服務合同范本3篇
- 2025年度企業(yè)項目簡易采購合同模板下載
- 2024年浙江寧波永耀供電服務有限公司招聘筆試參考題庫含答案解析
- 履行職責、作風建設、廉潔自律情況個人述職報告(四篇合集)
- 精神病患者危險度的評估課件
- 《社會工作的理論》課件
- 2021電力建設項目工程總承包管理規(guī)范
- 智慧航天物聯(lián)網(wǎng)
- RM60實用操作課件
- 肝內(nèi)膽管癌的護理查房課件
- 自媒體培訓課件
- 學會傾聽(心理健康課件)
- 開展中小學人工智能教育成功案例與經(jīng)驗分享
評論
0/150
提交評論