2022屆江蘇省宜興市張渚徐舍教聯(lián)盟中考數學模擬預測試卷含解析_第1頁
2022屆江蘇省宜興市張渚徐舍教聯(lián)盟中考數學模擬預測試卷含解析_第2頁
2022屆江蘇省宜興市張渚徐舍教聯(lián)盟中考數學模擬預測試卷含解析_第3頁
2022屆江蘇省宜興市張渚徐舍教聯(lián)盟中考數學模擬預測試卷含解析_第4頁
2022屆江蘇省宜興市張渚徐舍教聯(lián)盟中考數學模擬預測試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022屆江蘇省宜興市張渚徐舍教聯(lián)盟中考數學模擬預測試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,△ABC中,D為BC的中點,以D為圓心,BD長為半徑畫一弧交AC于E點,若∠A=60°,∠B=100°,BC=4,則扇形BDE的面積為何?()A. B. C. D.2.計算的結果是()A.1 B.-1 C. D.3.下列命題是真命題的是()A.過一點有且只有一條直線與已知直線平行B.對角線相等且互相垂直的四邊形是正方形C.平分弦的直徑垂直于弦,并且平分弦所對的弧D.若三角形的三邊a,b,c滿足a2+b2+c2=ac+bc+ab,則該三角形是正三角形4.在一個不透明的口袋中裝有4個紅球和若干個白球,他們除顏色外其他完全相同.通過多次摸球實驗后發(fā)現,摸到紅球的頻率穩(wěn)定在25%附近,則口袋中白球可能有()A.16個 B.15個 C.13個 D.12個5.下列各式:①3+3=6;②=1;③+==2;④=2;其中錯誤的有().A.3個 B.2個 C.1個 D.0個6.如圖,長度為10m的木條,從兩邊各截取長度為xm的木條,若得到的三根木條能組成三角形,則x可以取的值為()A.2m B.m C.3m D.6m7.計算﹣8+3的結果是()A.﹣11 B.﹣5 C.5 D.118.下列命題正確的是()A.對角線相等的四邊形是平行四邊形B.對角線相等的四邊形是矩形C.對角線互相垂直的平行四邊形是菱形D.對角線互相垂直且相等的四邊形是正方形9.-sin60°的倒數為()A.-2 B. C.- D.-10.如圖:將一個矩形紙片,沿著折疊,使點分別落在點處.若,則的度數為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且﹣1<x1<0,對稱軸x=1.如圖所示,有下列5個結論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數).其中所有結論正確的是______(填寫番號).12.百子回歸圖是由1,2,3,…,100無重復排列而成的正方形數表,它是一部數化的澳門簡史,如:中央四位“19991220”標示澳門回歸日期,最后一行中間兩位“2350”標示澳門面積,…,同時它也是十階幻方,其每行10個數之和、每列10個數之和、每條對角線10個數之和均相等,則這個和為______.百子回歸13.點A(x1,y1)、B(x1,y1)在二次函數y=x1﹣4x﹣1的圖象上,若當1<x1<1,3<x1<4時,則y1與y1的大小關系是y1_____y1.(用“>”、“<”、“=”填空)14.如圖,在△ABC中,點E,F分別是AC,BC的中點,若S四邊形ABFE=9,則S三角形EFC=________.15.如圖,已知O為△ABC內一點,點D、E分別在邊AB和AC上,且,DE∥BC,設、,那么______(用、表示).16.已知函數y=-1,給出一下結論:①y的值隨x的增大而減?、诖撕瘮档膱D形與x軸的交點為(1,0)③當x>0時,y的值隨x的增大而越來越接近-1④當x≤時,y的取值范圍是y≥1以上結論正確的是_________(填序號)三、解答題(共8題,共72分)17.(8分)如圖1,△ABC與△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE,BD,PM,PN,MN.(1)觀察猜想:圖1中,PM與PN的數量關系是,位置關系是.(2)探究證明:將圖1中的△CDE繞著點C順時針旋轉α(0°<α<90°),得到圖2,AE與MP、BD分別交于點G、H,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△CDE繞點C任意旋轉,若AC=4,CD=2,請直接寫出△PMN面積的最大值.18.(8分)如圖,已知直線AB經過點(0,4),與拋物線y=x2交于A,B兩點,其中點A的橫坐標是.求這條直線的函數關系式及點B的坐標.在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標,若不存在請說明理由.過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當點M的橫坐標為何值時,MN+3MP的長度最大?最大值是多少?19.(8分)如圖,在平面直角坐標系xOy中,直線與雙曲線(x>0)交于點.求a,k的值;已知直線過點且平行于直線,點P(m,n)(m>3)是直線上一動點,過點P分別作軸、軸的平行線,交雙曲線(x>0)于點、,雙曲線在點M、N之間的部分與線段PM、PN所圍成的區(qū)域(不含邊界)記為.橫、縱坐標都是整數的點叫做整點.①當時,直接寫出區(qū)域內的整點個數;②若區(qū)域內的整點個數不超過8個,結合圖象,求m的取值范圍.20.(8分)如圖,在平行四邊形ABCD中,AB<BC.利用尺規(guī)作圖,在AD邊上確定點E,使點E到邊AB,BC的距離相等(不寫作法,保留作圖痕跡);若BC=8,CD=5,則CE=.21.(8分)在陽光體育活動時間,小亮、小瑩、小芳和大剛到學校乒乓球室打乒乓球,當時只有一副空球桌,他們只能選兩人打第一場.(1)如果確定小亮打第一場,再從其余三人中隨機選取一人打第一場,求恰好選中大剛的概率;(2)如果確定小亮做裁判,用“手心、手背”的方法決定其余三人哪兩人打第一場.游戲規(guī)則是:三人同時伸“手心、手背”中的一種手勢,如果恰好有兩人伸出的手勢相同,那么這兩人上場,否則重新開始,這三人伸出“手心”或“手背”都是隨機的,請用畫樹狀圖的方法求小瑩和小芳打第一場的概率.22.(10分)“足球運球”是中考體育必考項目之一.蘭州市某學校為了解今年九年級學生足球運球的掌握情況,隨機抽取部分九年級學生足球運球的測試成績作為一個樣本,按A,B,C,D四個等級進行統(tǒng)計,制成了如下不完整的統(tǒng)計圖.(說明:A級:8分﹣10分,B級:7分﹣7.9分,C級:6分﹣6.9分,D級:1分﹣5.9分)根據所給信息,解答以下問題:(1)在扇形統(tǒng)計圖中,C對應的扇形的圓心角是_____度;(2)補全條形統(tǒng)計圖;(3)所抽取學生的足球運球測試成績的中位數會落在_____等級;(4)該校九年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?23.(12分)小王是“新星廠”的一名工人,請你閱讀下列信息:信息一:工人工作時間:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生產甲、乙兩種產品的件數與所用時間的關系見下表:生產甲產品數(件)生產乙產品數(件)所用時間(分鐘)10103503020850信息三:按件計酬,每生產一件甲種產品得1.50元,每生產一件乙種產品得2.80元.信息四:該廠工人每月收入由底薪和計酬工資兩部分構成,小王每月的底薪為1900元,請根據以上信息,解答下列問題:(1)小王每生產一件甲種產品,每生產一件乙種產品分別需要多少分鐘;(2)2018年1月工廠要求小王生產甲種產品的件數不少于60件,則小王該月收入最多是多少元?此時小王生產的甲、乙兩種產品分別是多少件?24.隨著社會經濟的發(fā)展,汽車逐漸走入平常百姓家.某數學興趣小組隨機抽取了我市某單位部分職工進行調查,對職工購車情況分4類(A:車價40萬元以上;B:車價在20—40萬元;C:車價在20萬元以下;D:暫時未購車)進行了統(tǒng)計,并將統(tǒng)計結果繪制成以下條形統(tǒng)計圖和扇形統(tǒng)計圖.請結合圖中信息解答下列問題:(1)調查樣本人數為__________,樣本中B類人數百分比是_______,其所在扇形統(tǒng)計圖中的圓心角度數是________;(2)把條形統(tǒng)計圖補充完整;(3)該單位甲、乙兩個科室中未購車人數分別為2人和3人,現從中選2人去參觀車展,用列表或畫樹狀圖的方法,求選出的2人來自不同科室的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】分析:求出扇形的圓心角以及半徑即可解決問題;詳解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故選C.點睛:本題考查扇形的面積公式、三角形內角和定理等知識,解題的關鍵是記住扇形的面積公式:S=.2、C【解析】

原式通分并利用同分母分式的減法法則計算,即可得到結果.【詳解】解:==,故選:C.【點睛】此題考查了分式的混合運算,熟練掌握運算法則是解本題的關鍵.3、D【解析】

根據真假命題的定義及有關性質逐項判斷即可.【詳解】A、真命題為:過直線外一點有且只有一條直線與已知直線平行,故本選項錯誤;B、真命題為:對角線相等且互相垂直的四邊形是正方形或等腰梯形,故本選項錯誤;C、真命題為:平分弦的直徑垂直于弦(非直徑),并且平分弦所對的弧,故本選項錯誤;D、∵a2+b2+c2=ac+bc+ab,∴2a2+2b2+2c2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,故本選項正確.故選D.【點睛】本題考查了命題的真假,熟練掌握真假命題的定義及幾何圖形的性質是解答本題的關鍵,當命題的條件成立時,結論也一定成立的命題叫做真命題;當命題的條件成立時,不能保證命題的結論總是成立的命題叫做假命題.熟練掌握所學性質是解答本題的關鍵.4、D【解析】

由摸到紅球的頻率穩(wěn)定在25%附近得出口袋中得到紅色球的概率,進而求出白球個數即可.【詳解】解:設白球個數為:x個,

∵摸到紅色球的頻率穩(wěn)定在25%左右,

∴口袋中得到紅色球的概率為25%,

∴,

解得:x=12,

經檢驗x=12是原方程的根,

故白球的個數為12個.

故選:D.【點睛】本題考查了利用頻率估計概率,根據大量反復試驗下頻率穩(wěn)定值即概率得出是解題的關鍵.5、A【解析】3+3=6,錯誤,無法計算;②=1,錯誤;③+==2不能計算;④=2,正確.故選A.6、C【解析】

依據題意,三根木條的長度分別為xm,xm,(10-2x)m,在根據三角形的三邊關系即可判斷.【詳解】解:由題意可知,三根木條的長度分別為xm,xm,(10-2x)m,∵三根木條要組成三角形,∴x-x<10-2x<x+x,解得:.故選擇C.【點睛】本題主要考察了三角形三邊的關系,關鍵是掌握三角形兩邊之和大于第三邊,兩邊之差的絕對值小于第三邊.7、B【解析】

絕對值不等的異號加法,取絕對值較大的加數符號,并用較大的絕對值減去較小的絕對值.互為相反數的兩個數相加得1.依此即可求解.【詳解】解:?8+3=?2.故選B.【點睛】考查了有理數的加法,在進行有理數加法運算時,首先判斷兩個加數的符號:是同號還是異號,是否有1.從而確定用那一條法則.在應用過程中,要牢記“先符號,后絕對值”.8、C【解析】分析:根據平行四邊形、矩形、菱形、正方形的判定定理判斷即可.詳解:對角線互相平分的四邊形是平行四邊形,A錯誤;對角線相等的平行四邊形是矩形,B錯誤;對角線互相垂直的平行四邊形是菱形,C正確;對角線互相垂直且相等的平行四邊形是正方形;故選:C.點睛:本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質定理.9、D【解析】分析:根據乘積為1的兩個數互為倒數,求出它的倒數即可.詳解:的倒數是.故選D.點睛:考查特殊角的三角函數和倒數的定義,熟記特殊角的三角函數值是解題的關鍵.10、B【解析】根據折疊前后對應角相等可知.

解:設∠ABE=x,

根據折疊前后角相等可知,∠C1BE=∠CBE=50°+x,

所以50°+x+x=90°,

解得x=20°.

故選B.“點睛”本題考查圖形的翻折變換,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.二、填空題(本大題共6個小題,每小題3分,共18分)11、③④⑤【解析】

根據函數圖象和二次函數的性質可以判斷題目中各個小題的結論是否成立,從而可以解答本題.【詳解】解:由圖象可得,拋物線開口向下,則a<0,拋物線與y軸交于正半軸,則c>0,對稱軸在y軸右側,則與a的符號相反,故b>0.

∴a<0,b>0,c>0,

∴abc<0,故①錯誤,

當x=-1時,y=a-b+c<0,得b>a+c,故②錯誤,

∵二次函數y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且-1<x1<0,對稱軸x=1,

∴x=2時的函數值與x=0的函數值相等,

∴x=2時,y=4a+2b+c>0,故③正確,

∵x=-1時,y=a-b+c<0,-=1,

∴2a-2b+2c<0,b=-2a,

∴-b-2b+2c<0,

∴2c<3b,故④正確,

由圖象可知,x=1時,y取得最大值,此時y=a+b+c,

∴a+b+c>am2+bm+c(m≠1),

∴a+b>am2+bm

∴a+b>m(am+b),故⑤正確,

故答案為:③④⑤.【點睛】本題考查二次函數圖象與系數的關系、拋物線與x軸的交點坐標,解答本題的關鍵是明確題意,利用二次函數的性質和數形結合的思想解答.12、505【解析】

根據已知得:百子回歸圖是由1,2,3…,100無重復排列而成,先計算總和;又因為一共有10行,且每行10個數之和均相等,所以每行10個數之和=總和÷10,代入求解即可.【詳解】1~100的總和為:=5050,

一共有10行,且每行10個數之和均相等,所以每行10個數之和為:n=5050÷10=505,故答案為505.【點睛】本題是數字變化類的規(guī)律題,是??碱}型;一般思路為:按所描述的規(guī)律從1開始計算,從計算的過程中慢慢發(fā)現規(guī)律,總結出與每一次計算都符合的規(guī)律,就是最后的答案13、<【解析】

先根據二次函數的解析式判斷出拋物線的開口方向及對稱軸,根據圖象上的點的橫坐標距離對稱軸的遠近來判斷縱坐標的大小.【詳解】由二次函數y=x1-4x-1=(x-1)1-5可知,其圖象開口向上,且對稱軸為x=1,

∵1<x1<1,3<x1<4,

∴A點橫坐標離對稱軸的距離小于B點橫坐標離對稱軸的距離,

∴y1<y1.

故答案為<.14、3【解析】分析:由已知條件易得:EF∥AB,且EF:AB=1:2,從而可得△CEF∽△CAB,且相似比為1:2,設S△CEF=x,根據相似三角形的性質可得方程:,解此方程即可求得△EFC的面積.詳解:∵在△ABC中,點E,F分別是AC,BC的中點,∴EF是△ABC的中位線,∴EF∥AB,EF:AB=1:2,∴△CEF∽△CAB,∴S△CEF:S△CAB=1:4,設S△CEF=x,∵S△CAB=S△CEF+S四邊形ABFE,S四邊形ABFE=9,∴,解得:,經檢驗:是所列方程的解.故答案為:3.點睛:熟悉三角形的中位線定理和相似三角形的面積比等于相似比的平方是正確解答本題的關鍵.15、【解析】

根據,DE∥BC,結合平行線分線段成比例來求.【詳解】∵,DE∥BC,∴,∴==.∵,∴∴.故答案為:.【點睛】本題考查的知識點是平面向量,解題的關鍵是熟練的掌握平面向量.16、②③【解析】(1)因為函數的圖象有兩個分支,在每個分支上y隨x的增大而減小,所以結論①錯誤;(2)由解得:,∴的圖象與x軸的交點為(1,0),故②中結論正確;(3)由可知當x>0時,y的值隨x的增大而越來越接近-1,故③中結論正確;(4)因為在中,當時,,故④中結論錯誤;綜上所述,正確的結論是②③.故答案為:②③.三、解答題(共8題,共72分)17、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由見解析(3)【解析】

(1)由等腰直角三角形的性質易證△ACE≌△BCD,由此可得AE=BD,再根據三角形中位線定理即可得到PM=PN,由平行線的性質可得PM⊥PN;(2)(1)中的結論仍舊成立,由(1)中的證明思路即可證明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出當BD的值最大時,PM的值最大,△PMN的面積最大,推出當B、C、D共線時,BD的最大值=BC+CD=6,由此即可解決問題;【詳解】解:(1)PM=PN,PM⊥PN,理由如下:延長AE交BD于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵∠EAC+∠AEC=90°,∠AEC=∠BEO,∴∠CBD+∠BEO=90°,∴∠BOE=90°,即AE⊥BD,∵點M、N分別是斜邊AB、DE的中點,點P為AD的中點,∴PM=BD,PN=AE,∴PM=PM,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN,故答案是:PM=PN,PM⊥PN;(2)如圖②中,設AE交BC于O,∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°,∴∠ACB+∠BCE=∠ECD+∠BCE,∴∠ACE=∠BCD,∴△ACE≌△BCD,∴AE=BD,∠CAE=∠CBD,又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°,∵點P、M、N分別為AD、AB、DE的中點,∴PM=BD,PM∥BD,PN=AE,PN∥AE,∴PM=PN,∴∠MGE+∠BHA=180°,∴∠MGE=90°,∴∠MPN=90°,∴PM⊥PN;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,∴當BD的值最大時,PM的值最大,△PMN的面積最大,∴當B、C、D共線時,BD的最大值=BC+CD=6,∴PM=PN=3,∴△PMN的面積的最大值=×3×3=.【點睛】本題考查的是幾何變換綜合題,熟知等腰直角三角形的判定與性質、全等三角形的判定與性質、三角形中位線定理的運用,解題的關鍵是正確尋找全等三角形解決問題,學會利用三角形的三邊關系解決最值問題,屬于中考壓軸題.18、(1)直線y=x+4,點B的坐標為(8,16);(2)點C的坐標為(﹣,0),(0,0),(6,0),(32,0);(3)當M的橫坐標為6時,MN+3PM的長度的最大值是1.【解析】

(1)首先求得點A的坐標,然后利用待定系數法確定直線的解析式,從而求得直線與拋物線的交點坐標;(2)分若∠BAC=90°,則AB2+AC2=BC2;若∠ACB=90°,則AB2=AC2+BC2;若∠ABC=90°,則AB2+BC2=AC2三種情況求得m的值,從而確定點C的坐標;(3)設M(a,a2),得MN=a2+1,然后根據點P與點M縱坐標相同得到x=,從而得到MN+3PM=﹣a2+3a+9,確定二次函數的最值即可.【詳解】(1)∵點A是直線與拋物線的交點,且橫坐標為-2,,A點的坐標為(-2,1),設直線的函數關系式為y=kx+b,將(0,4),(-2,1)代入得解得∴y=x+4∵直線與拋物線相交,解得:x=-2或x=8,

當x=8時,y=16,

∴點B的坐標為(8,16);(2)存在.∵由A(-2,1),B(8,16)可求得AB2==325.設點C(m,0),同理可得AC2=(m+2)2+12=m2+4m+5,BC2=(m-8)2+162=m2-16m+320,①若∠BAC=90°,則AB2+AC2=BC2,即325+m2+4m+5=m2-16m+320,解得m=-;②若∠ACB=90°,則AB2=AC2+BC2,即325=m2+4m+5+m2-16m+320,解得m=0或m=6;③若∠ABC=90°,則AB2+BC2=AC2,即m2+4m+5=m2-16m+320+325,解得m=32,∴點C的坐標為(-,0),(0,0),(6,0),(32,0)(3)設M(a,a2),則MN=,又∵點P與點M縱坐標相同,∴x+4=a2,∴x=,∴點P的橫坐標為,∴MP=a-,∴MN+3PM=a2+1+3(a-)=-a2+3a+9=-(a-6)2+1,∵-2≤6≤8,∴當a=6時,取最大值1,∴當M的橫坐標為6時,MN+3PM的長度的最大值是119、(1),;(2)①3,②.【解析】

(1)將代入可求出a,將A點坐標代入可求出k;(2)①根據題意畫出函數圖像,可直接寫出區(qū)域內的整點個數;②求出直線的表達式為,根據圖像可得到兩種極限情況,求出對應的m的取值范圍即可.【詳解】解:(1)將代入得a=4將代入,得(2)①區(qū)域內的整點個數是3②∵直線是過點且平行于直線∴直線的表達式為當時,即線段PM上有整點∴【點睛】本題考查了待定系數法求函數解析式以及函數圖像的交點問題,正確理解整點的定義并畫出函數圖像,運用數形結合的思想是解題關鍵.20、(1)見解析;(2)1.【解析】試題分析:根據角平分線上的點到角的兩邊距離相等知作出∠A的平分線即可;根據平行四邊形的性質可知AB=CD=5,AD∥BC,再根據角平分線的性質和平行線的性質得到∠BAE=∠BEA,再根據等腰三角形的性質和線段的和差關系即可求解.試題解析:(1)如圖所示:E點即為所求.(2)∵四邊形ABCD是平行四邊形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分線,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=1.考點:作圖—復雜作圖;平行四邊形的性質21、(1)(2)【解析】

(1)由小亮打第一場,再從其余三人中隨機選取一人打第一場,求出恰好選中大剛的概率即可;(2)畫樹狀圖得出所有等可能的情況數,找出小瑩和小芳伸“手心”或“手背”恰好相同的情況數,即可求出所求的概率.【詳解】解:(1)∵確定小亮打第一場,∴再從小瑩,小芳和大剛中隨機選取一人打第一場,恰好選中大剛的概率為;(2)列表如下:所有等可能的情況有8種,其中小瑩和小芳伸“手心”或“手背”恰好相同且與大剛不同的結果有2個,則小瑩與小芳打第一場的概率為.【點睛】本題主要考查了列表法與樹狀圖法;概率公式.22、(1)117;(2)答案見圖;(3)B;(4)30.【解析】

(1)先根據B等級人數及其百分比求得總人數,總人數減去其他等級人數求得C等級人數,繼而用360°乘以C等級人數所占比例即可得;(2)根據以上所求結果即可補全圖形;(3)根據中位數的定義求解可得;(4)總人數乘以樣本中A等級人數所占比例可得.【詳解】(1)∵總人數為18÷45%=40人,∴C等級人數為40﹣(4+18+5)=13人,則C對應的扇形的圓心角是360°×1340故答案為:117;(2)補全條形圖如下:(3)因為共有40個數據,其中位數是第20、21個數據的平均數,而第20、21個數據均落在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論