2024屆河北省保定市滿城區(qū)實驗中學中考四模數(shù)學試題含解析_第1頁
2024屆河北省保定市滿城區(qū)實驗中學中考四模數(shù)學試題含解析_第2頁
2024屆河北省保定市滿城區(qū)實驗中學中考四模數(shù)學試題含解析_第3頁
2024屆河北省保定市滿城區(qū)實驗中學中考四模數(shù)學試題含解析_第4頁
2024屆河北省保定市滿城區(qū)實驗中學中考四模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆河北省保定市滿城區(qū)實驗中學中考四模數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.下列各式正確的是()A. B.C. D.2.-的絕對值是()A.-4 B. C.4 D.0.43.關(guān)于的分式方程解為,則常數(shù)的值為()A. B. C. D.4.不等式的解集在數(shù)軸上表示正確的是()A. B. C. D.5.下列幾何體中,主視圖和俯視圖都為矩形的是(

)A. B. C. D.6.計算(x-2)(x+5)的結(jié)果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-107.港珠澳大橋目前是全世界最長的跨海大橋,其主體工程“海中橋隧”全長35578米,數(shù)據(jù)35578用科學記數(shù)法表示為()A.35.578×103 B.3.5578×104C.3.5578×105 D.0.35578×1058.一個幾何體的三視圖如圖所示,則該幾何體的形狀可能是()A.B.C.D.9.下列說法正確的是()A.“買一張電影票,座位號為偶數(shù)”是必然事件B.若甲、乙兩組數(shù)據(jù)的方差分別為S甲2=0.3,S乙2=0.1,則甲組數(shù)據(jù)比乙組數(shù)據(jù)穩(wěn)定C.一組數(shù)據(jù)2,4,5,5,3,6的眾數(shù)是5D.一組數(shù)據(jù)2,4,5,5,3,6的平均數(shù)是510.長度單位1納米=10A.25.1×10-6米B.C.2.51×105米D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,CB=CA,∠ACB=90°,點D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點F作FG⊥CA,交CA的延長線于點G,連接FB,交DE于點Q,給出以下結(jié)論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ?AC,其中正確的結(jié)論的個數(shù)是______.12.某校組織“優(yōu)質(zhì)課大賽”活動,經(jīng)過評比有兩名男教師和兩名女教師獲得一等獎,學校將從這四名教師中隨機挑選兩位教師參加市教育局組織的決賽,挑選的兩位教師恰好是一男一女的概率為____.13..如圖,圓錐側(cè)面展開得到扇形,此扇形半徑CA=6,圓心角∠ACB=120°,則此圓錐高OC的長度是_______.14.分式方程的解為x=_____.15.4是_____的算術(shù)平方根.16.如圖甲,對于平面上不大于90°的∠MON,我們給出如下定義:如果點P在∠MON的內(nèi)部,作PE⊥OM,PF⊥ON,垂足分別為點E、F,那么稱PE+PF的值為點P相對于∠MON的“點角距離”,記為d(P,∠MON).如圖乙,在平面直角坐標系xOy中,點P在坐標平面內(nèi),且點P的橫坐標比縱坐標大2,對于∠xOy,滿足d(P,∠xOy)=10,點P的坐標是_____.三、解答題(共8題,共72分)17.(8分)如圖,在中,以為直徑的⊙交于點,過點作于點,且.()判斷與⊙的位置關(guān)系并說明理由;()若,,求⊙的半徑.18.(8分)如圖,已知正方形ABCD的邊長為4,點P是AB邊上的一個動點,連接CP,過點P作PC的垂線交AD于點E,以PE為邊作正方形PEFG,頂點G在線段PC上,對角線EG、PF相交于點O.(1)若AP=1,則AE=;(2)①求證:點O一定在△APE的外接圓上;②當點P從點A運動到點B時,點O也隨之運動,求點O經(jīng)過的路徑長;(3)在點P從點A到點B的運動過程中,△APE的外接圓的圓心也隨之運動,求該圓心到AB邊的距離的最大值.19.(8分)某校學生會準備調(diào)查六年級學生參加“武術(shù)類”、“書畫類”、“棋牌類”、“器樂類”四類校本課程的人數(shù).(1)確定調(diào)查方式時,甲同學說:“我到六年級(1)班去調(diào)查全體同學”;乙同學說:“放學時我到校門口隨機調(diào)查部分同學”;丙同學說:“我到六年級每個班隨機調(diào)查一定數(shù)量的同學”.請指出哪位同學的調(diào)查方式最合理.類別頻數(shù)(人數(shù))頻率武術(shù)類0.25書畫類200.20棋牌類15b器樂類合計a1.00(2)他們采用了最為合理的調(diào)查方法收集數(shù)據(jù),并繪制了如圖所示的統(tǒng)計表和扇形統(tǒng)計圖.請你根據(jù)以上圖表提供的信息解答下列問題:①a=_____,b=_____;②在扇形統(tǒng)計圖中,器樂類所對應扇形的圓心角的度數(shù)是_____;③若該校六年級有學生560人,請你估計大約有多少學生參加武術(shù)類校本課程.20.(8分)如圖,在△ABC中,∠C=90°,以AB上一點O為圓心,OA長為半徑的圓恰好與BC相切于點D,分別交AC,AB于點E,F(xiàn).(1)若∠B=30°,求證:以A,O,D,E為頂點的四邊形是菱形;(2)填空:若AC=6,AB=10,連接AD,則⊙O的半徑為,AD的長為.21.(8分)在平面直角坐標系中,O為原點,點A(3,0),點B(0,4),把△ABO繞點A順時針旋轉(zhuǎn),得△AB′O′,點B,O旋轉(zhuǎn)后的對應點為B′,O.(1)如圖1,當旋轉(zhuǎn)角為90°時,求BB′的長;(2)如圖2,當旋轉(zhuǎn)角為120°時,求點O′的坐標;(3)在(2)的條件下,邊OB上的一點P旋轉(zhuǎn)后的對應點為P′,當O′P+AP′取得最小值時,求點P′的坐標.(直接寫出結(jié)果即可)22.(10分)解分式方程:23.(12分)如圖,AB為⊙O的直徑,點E在⊙O,C為弧BE的中點,過點C作直線CD⊥AE于D,連接AC、BC.試判斷直線CD與⊙O的位置關(guān)系,并說明理由若AD=2,AC=,求⊙O的半徑.24.某天,甲、乙、丙三人一起乘坐公交車,他們上車時發(fā)現(xiàn)公交車上還有A,B,W三個空座位,且只有A,B兩個座位相鄰,若三人隨機選擇座位,試解決以下問題:(1)甲選擇座位W的概率是多少;(2)試用列表或畫樹狀圖的方法求甲、乙選擇相鄰座位A,B的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】∵,則B錯;,則C;,則D錯,故選A.2、B【解析】

直接用絕對值的意義求解.【詳解】?的絕對值是.故選B.【點睛】此題是絕對值題,掌握絕對值的意義是解本題的關(guān)鍵.3、D【解析】

根據(jù)分式方程的解的定義把x=4代入原分式方程得到關(guān)于a的一次方程,解得a的值即可.【詳解】解:把x=4代入方程,得,解得a=1.經(jīng)檢驗,a=1是原方程的解故選D.點睛:此題考查了分式方程的解,分式方程注意分母不能為2.4、B【解析】

根據(jù)不等式的性質(zhì):先移項,再合并即可解得不等式的解集,最后將解集表示在數(shù)軸上即可.【詳解】解:解:移項得,

x≤3-2,

合并得,

x≤1;

在數(shù)軸上表示應包括1和它左邊的部分,如下:;

故選:B.【點睛】本題考查了一元一次不等式的解集的求法及在數(shù)軸上表示不等式的解集,注意數(shù)軸上包括的端點實心點表示.5、B【解析】A、主視圖為等腰三角形,俯視圖為圓以及圓心,故A選項錯誤;B、主視圖為矩形,俯視圖為矩形,故B選項正確;C、主視圖,俯視圖均為圓,故C選項錯誤;D、主視圖為矩形,俯視圖為三角形,故D選項錯誤.故選:B.6、C【解析】

根據(jù)多項式乘以多項式的法則進行計算即可.【詳解】x-2x+5故選:C.【點睛】考查多項式乘以多項式,掌握多項式乘以多項式的運算法則是解題的關(guān)鍵.7、B【解析】

科學計數(shù)法是a×,且,n為原數(shù)的整數(shù)位數(shù)減一.【詳解】解:35578=3.5578×,故選B.【點睛】本題主要考查的是利用科學計數(shù)法表示較大的數(shù),屬于基礎題型.理解科學計數(shù)法的表示方法是解題的關(guān)鍵.8、D【解析】試題分析:由主視圖和左視圖可得此幾何體上面為臺,下面為柱體,由俯視圖為圓環(huán)可得幾何體為.故選D.考點:由三視圖判斷幾何體.視頻9、C【解析】

根據(jù)確定性事件、方差、眾數(shù)以及平均數(shù)的定義進行解答即可.【詳解】解:A、“買一張電影票,座位號為偶數(shù)”是隨機事件,此選項錯誤;B、若甲、乙兩組數(shù)據(jù)的方差分別為S甲2=0.3,S乙2=0.1,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定,此選項錯誤;C、一組數(shù)據(jù)2,4,5,5,3,6的眾數(shù)是5,此選項正確;D、一組數(shù)據(jù)2,4,5,5,3,6的平均數(shù)是,此選項錯誤;故選:C.【點睛】本題考查了必然事件的定義,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.10、D【解析】先將25100用科學記數(shù)法表示為2.51×104,再和10-9相乘,等于2.51×10-5米.故選D二、填空題(本大題共6個小題,每小題3分,共18分)11、①②③④.【解析】

由正方形的性質(zhì)得出∠FAD=90°,AD=AF=EF,證出∠CAD=∠AFG,由AAS證明△FGA≌△ACD,得出AC=FG,①正確;

證明四邊形CBFG是矩形,得出S△FAB=FB?FG=S四邊形CBFG,②正確;

由等腰直角三角形的性質(zhì)和矩形的性質(zhì)得出∠ABC=∠ABF=45°,③正確;

證出△ACD∽△FEQ,得出對應邊成比例,得出④正確.【詳解】解:∵四邊形ADEF為正方形,

∴∠FAD=90°,AD=AF=EF,

∴∠CAD+∠FAG=90°,

∵FG⊥CA,

∴∠GAF+∠AFG=90°,

∴∠CAD=∠AFG,

在△FGA和△ACD中,,

∴△FGA≌△ACD(AAS),

∴AC=FG,①正確;

∵BC=AC,

∴FG=BC,

∵∠ACB=90°,F(xiàn)G⊥CA,

∴FG∥BC,

∴四邊形CBFG是矩形,∴∠CBF=90°,S△FAB=FB?FG=S四邊形CBFG,②正確;

∵CA=CB,∠C=∠CBF=90°,

∴∠ABC=∠ABF=45°,③正確;

∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,

∴△ACD∽△FEQ,

∴AC:AD=FE:FQ,

∴AD?FE=AD2=FQ?AC,④正確;

故答案為①②③④.【點睛】本題考查了相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、正方形的性質(zhì)、矩形的判定與性質(zhì)、等腰直角三角形的性質(zhì);熟練掌握正方形的性質(zhì),證明三角形全等和三角形相似是解決問題的關(guān)鍵.12、【解析】

根據(jù)列表法求出所有可能及可得出挑選的兩位教師恰好是一男一女的結(jié)果數(shù)而利用概率公式計算可得.【詳解】解:所有可能的結(jié)果如下表:男1男2女1女2男1(男1,男2)(男1,女1)(男1,女2)男2(男2,男1)(男2,女1)(男2,女2)女1(女1,男1)(女1,男2)(女1,女2)女2(女2,男1)(女2,男2)(女2,女1)由表可知總共有12種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同.挑選的兩位教師恰好是一男一女的結(jié)果有8種,所以其概率為挑選的兩位教師恰好是一男一女的概率為=,故答案為.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.13、4【解析】

先根據(jù)圓錐的側(cè)面展開圖,扇形的弧長等于該圓錐的底面圓的周長,求出OA,最后用勾股定理即可得出結(jié)論.【詳解】設圓錐底面圓的半徑為r,∵AC=6,∠ACB=120°,∴=2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根據(jù)勾股定理得,OC==4,故答案為4.【點睛】本題考查了扇形的弧長公式,圓錐的側(cè)面展開圖,勾股定理,求出OA的長是解本題的關(guān)鍵.14、2【解析】根據(jù)分式方程的解法,先去分母化為整式方程為2(x+1)=3x,解得x=2,檢驗可知x=2是原分式方程的解.故答案為2.15、16.【解析】試題解析:∵42=16,∴4是16的算術(shù)平方根.考點:算術(shù)平方根.16、(6,4)或(﹣4,﹣6)【解析】

設點P的橫坐標為x,表示出縱坐標,然后列方程求出x,再求解即可.【詳解】解:設點P的橫坐標為x,則點P的縱坐標為x-2,由題意得,

當點P在第一象限時,x+x-2=10,

解得x=6,

∴x-2=4,

∴P(6,4);

當點P在第三象限時,-x-x+2=10,

解得x=-4,

∴x-2=-6,

∴P(-4,-6).

故答案為:(6,4)或(-4,-6).【點睛】本題主要考查了點的坐標,讀懂題目信息,理解“點角距離”的定義并列出方程是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)DE與⊙O相切,詳見解析;(2)5【解析】

(1)根據(jù)直徑所對的圓心角是直角,再結(jié)合所給條件∠BDE=∠A,可以推導出∠ODE=90°,說明相切的位置關(guān)系。(2)根據(jù)直徑所對的圓心角是直角,并且在△BDE中,由DE⊥BC,有∠BDE+∠DBE=90°可以推導出∠DAB=∠C,可判定△ABC是等腰三角形,再根據(jù)BD⊥AC可知D是AC的中點,從而得出AD的長度,再在Rt△ADB中計算出直徑AB的長,從而算出半徑?!驹斀狻浚?)連接OD,在⊙O中,因為AB是直徑,所以∠ADB=90°,即∠ODA+∠ODB=90°,由OA=OD,故∠A=∠ODA,又因為∠BDE=∠A,所以∠ODA=∠BDE,故∠ODA+∠ODB=∠BDE+∠ODB=∠ODE=90°,即OD⊥DE,OD過圓心,D是圓上一點,故DE是⊙O切線上的一段,因此位置關(guān)系是直線DE與⊙O相切;(2)由(1)可知,∠ADB=90°,故∠A+∠ABD=90°,故BD⊥AC,由∠BDE=∠A,則∠BDE+∠ABD=90°,因為DE⊥BC,所以∠DEB=90°,故在△BDE中,有∠BDE+∠DBE=90°,則∠ABD=∠DBE,又因為BD⊥AC,即∠ADB=∠CDB=90°,所以∠DAB=∠C,故△ABC是等腰三角形,BD是等腰△ABC底邊BC上的高,則D是AC的中點,故AD=AC=×16=8,在Rt△ABD中,tanA===,可解得BD=6,由勾股定理可得AB===10,AB為直徑,所以⊙O的半徑是5.【點睛】本題主要考查圓中的計算問題和與圓有關(guān)的位置關(guān)系,解本題的要點在于求出AD的長,從而求出AB的長.18、(1)34;(2)①證明見解析;②22;(3)【解析】試題分析:(1)由正方形的性質(zhì)得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余關(guān)系證出∠AEP=∠PBC,得出△APE∽△BCP,得出對應邊成比例即可求出AE的長;(2)①A、P、O、E四點共圓,即可得出結(jié)論;②連接OA、AC,由勾股定理求出AC=42,由圓周角定理得出∠OAP=∠OEP=45°,周長點O在AC上,當P運動到點B時,O為AC(3)設△APE的外接圓的圓心為M,作MN⊥AB于N,由三角形中位線定理得出MN=12AE,設AP=x,則BP=4﹣x,由相似三角形的對應邊成比例求出AE的表達式,由二次函數(shù)的最大值求出AE的最大值為1,得出MN的最大值=1試題解析:(1)∵四邊形ABCD、四邊形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BCP,∴AEBP=APBC,即AE4-1故答案為:34(2)①∵PF⊥EG,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A、P、O、E四點共圓,∴點O一定在△APE的外接圓上;②連接OA、AC,如圖1所示:∵四邊形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC=42+4∵A、P、O、E四點共圓,∴∠OAP=∠OEP=45°,∴點O在AC上,當P運動到點B時,O為AC的中點,OA=12AC=2即點O經(jīng)過的路徑長為22(3)設△APE的外接圓的圓心為M,作MN⊥AB于N,如圖2所示:則MN∥AE,∵ME=MP,∴AN=PN,∴MN=12AE設AP=x,則BP=4﹣x,由(1)得:△APE∽△BCP,∴AEBP=APBC,即AE4-x=x∴x=2時,AE的最大值為1,此時MN的值最大=12×1=1即△APE的圓心到AB邊的距離的最大值為12【點睛】本題考查圓、二次函數(shù)的最值等,正確地添加輔助線,根據(jù)已知證明△APE∽△BCP是解題的關(guān)鍵.19、(1)見解析;(2)①a=100,b=0.15;②144°;③140人.【解析】

(1)采用隨機調(diào)查的方式比較合理,隨機調(diào)查的關(guān)鍵是調(diào)查的隨機性,這樣才合理;

(2)①用喜歡書畫類的頻數(shù)除以喜歡書畫類的頻率即可求得a值,用喜歡棋牌類的人數(shù)除以總?cè)藬?shù)即可求得b值.②求得器樂類的頻率乘以360°即可.③用總?cè)藬?shù)乘以喜歡武術(shù)類的頻率即可求喜歡武術(shù)的總?cè)藬?shù).【詳解】(1)∵調(diào)查的人數(shù)較多,范圍較大,∴應當采用隨機抽樣調(diào)查,∵到六年級每個班隨機調(diào)查一定數(shù)量的同學相對比較全面,∴丙同學的說法最合理.(2)①∵喜歡書畫類的有20人,頻率為0.20,∴a=20÷0.20=100,b=15÷100=0.15;②∵喜歡器樂類的頻率為:1﹣0.25﹣0.20﹣0.15=0.4,∴喜歡器樂類所對應的扇形的圓心角的度數(shù)為:360×0.4=144°;③喜歡武術(shù)類的人數(shù)為:560×0.25=140人.【點睛】本題考查了用樣本估計總體和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.20、(1)見解析;(2)【解析】

(1)先通過證明△AOE為等邊三角形,得出AE=OD,再根據(jù)“同位角相等,兩直線平行”證明AE//OD,從而證得四邊形AODE是平行四邊形,再根據(jù)“一組鄰邊相等的平行四邊形為菱形”即可得證.(2)利用在Rt△OBD中,sin∠B==可得出半徑長度,在Rt△ODB中BD=,可求得BD的長,由CD=CB﹣BD可得CD的長,在RT△ACD中,AD=,即可求出AD長度.【詳解】解:(1)證明:連接OE、ED、OD,在Rt△ABC中,∵∠B=30°,∴∠A=60°,∵OA=OE,∴△AEO是等邊三角形,∴AE=OE=AO∵OD=OA,∴AE=OD∵BC是圓O的切線,OD是半徑,∴∠ODB=90°,又∵∠C=90°∴AC∥OD,又∵AE=OD∴四邊形AODE是平行四邊形,∵OD=OA∴四邊形AODE是菱形.(2)在Rt△ABC中,∵AC=6,AB=10,∴sin∠B==,BC=8∵BC是圓O的切線,OD是半徑,∴∠ODB=90°,在Rt△OBD中,sin∠B==,∴OB=OD∵AO+OB=AB=10,∴OD+OD=10∴OD=∴OB=OD=∴BD==5∴CD=CB﹣BD=3∴AD===3.【點睛】本題主要考查圓中的計算問題、菱形以及相似三角形的判定與性質(zhì)21、(1)5;(2)O'(,);(3)P'(,).【解析】

(1)先求出AB.利用旋轉(zhuǎn)判斷出△ABB'是等腰直角三角形,即可得出結(jié)論;(2)先判斷出∠HAO'=60°,利用含30度角的直角三角形的性質(zhì)求出AH,OH,即可得出結(jié)論;(3)先確定出直線O'C的解析式,進而確定出點P的坐標,再利用含30度角的直角三角形的性質(zhì)即可得出結(jié)論.【詳解】解:(1)∵A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,由旋轉(zhuǎn)知,BA=B'A,∠BAB'=90°,∴△ABB'是等腰直角三角形,∴BB'=AB=5;(2)如圖2,過點O'作O'H⊥x軸于H,由旋轉(zhuǎn)知,O'A=OA=3,∠OAO'=120°,∴∠HAO'=60°,∴∠HO'A=30°,∴AH=AO'=,OH=AH=,∴OH=OA+AH=,∴O'();(3)由旋轉(zhuǎn)知,AP=AP',∴O'P+AP'=O'P+AP.如圖3,作A關(guān)于y軸的對稱點C,連接O'C交y軸于P,∴O'P+AP=O'P+CP=O'C,此時,O'P+A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論