2022屆山東廣饒縣重點名校中考數(shù)學模擬試卷含解析_第1頁
2022屆山東廣饒縣重點名校中考數(shù)學模擬試卷含解析_第2頁
2022屆山東廣饒縣重點名校中考數(shù)學模擬試卷含解析_第3頁
2022屆山東廣饒縣重點名校中考數(shù)學模擬試卷含解析_第4頁
2022屆山東廣饒縣重點名校中考數(shù)學模擬試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022屆山東廣饒縣重點名校中考數(shù)學模擬精編試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,若銳角△ABC內接于⊙O,點D在⊙O外(與點C在AB同側),則∠C與∠D的大小關系為()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.無法確定2.某春季田徑運動會上,參加男子跳高的15名運動員的成績如下表所示:成績人數(shù)這些運動員跳高成績的中位數(shù)是()A. B. C. D.3.如圖,是的外接圓,已知,則的大小為A. B. C. D.4.的倒數(shù)是()A. B.3 C. D.5.﹣2的絕對值是()A.2 B. C. D.6.點A(m﹣4,1﹣2m)在第四象限,則m的取值范圍是()A.m> B.m>4C.m<4 D.<m<47.如圖,如果從半徑為9cm的圓形紙片剪去圓周的一個扇形,將留下的扇形圍成一個圓錐(接縫處不重疊),那么這個圓錐的高為A.6cm B.cm C.8cm D.cm8.如圖,等腰△ABC中,AB=AC=10,BC=6,直線MN垂直平分AB交AC于D,連接BD,則△BCD的周長等于()A.13 B.14 C.15 D.169.若關于的一元二次方程x(x+1)+ax=0有兩個相等的實數(shù)根,則實數(shù)a的值為()A. B.1 C. D.10.如圖是一個由5個相同的正方體組成的立體圖形,它的三視圖是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.一只不透明的袋子中裝有紅球和白球共30個,這些球除了顏色外都相同,校課外學習小組做摸球實驗,將球攪勻后任意摸出一個球,記下顏色后放回,攪勻,通過多次重復試驗,算得摸到紅球的頻率是0.2,則袋中有________個紅球.12.如圖,將△AOB繞點按逆時針方向旋轉后得到,若,則的度數(shù)是_______.13.如圖,直角△ABC中,AC=3,BC=4,AB=5,則內部五個小直角三角形的周長為_____.14.如圖,△ABC中,CD⊥AB于D,E是AC的中點.若AD=6,DE=5,則CD的長等于.15.如圖,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分線MN交AC于點D,則∠A的度數(shù)是.16.計算:(1)()2=_____;(2)=_____.17.如圖,點C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點D在線段AB上運動,點E與點D關于AC對稱,DF⊥DE于點D,并交EC的延長線于點F.下列結論:①CE=CF;②線段EF的最小值為;③當AD=2時,EF與半圓相切;④若點F恰好落在BC上,則AD=;⑤當點D從點A運動到點B時,線段EF掃過的面積是.其中正確結論的序號是.三、解答題(共7小題,滿分69分)18.(10分)為了解朝陽社區(qū)歲居民最喜歡的支付方式,某興趣小組對社區(qū)內該年齡段的部分居民展開了隨機問卷調查(每人只能選擇其中一項),并將調查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息解答下列問題:求參與問卷調查的總人數(shù).補全條形統(tǒng)計圖.該社區(qū)中歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數(shù).19.(5分)已知:如圖,在平面直角坐標系中,O為坐標原點,△OAB的頂點A、B的坐標分別是A(0,5),B(3,1),過點B畫BC⊥AB交直線y=-m(m>54)于點C,連結AC,以點A為圓心,AC為半徑畫弧交x軸負半軸于點D,連結AD(1)求證:△ABC≌△AOD.(2)設△ACD的面積為s,求s關于m的函數(shù)關系式.(3)若四邊形ABCD恰有一組對邊平行,求m的值.20.(8分)如下表所示,有A、B兩組數(shù):第1個數(shù)第2個數(shù)第3個數(shù)第4個數(shù)……第9個數(shù)……第n個數(shù)A組﹣6﹣5﹣2……58……n2﹣2n﹣5B組14710……25……(1)A組第4個數(shù)是;用含n的代數(shù)式表示B組第n個數(shù)是,并簡述理由;在這兩組數(shù)中,是否存在同一列上的兩個數(shù)相等,請說明.21.(10分)如圖,是等腰三角形,,.(1)尺規(guī)作圖:作的角平分線,交于點(保留作圖痕跡,不寫作法);(2)判斷是否為等腰三角形,并說明理由.22.(10分)為做好防汛工作,防汛指揮部決定對某水庫的水壩進行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來的高度BC.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)23.(12分)如圖,直線y=kx+2與x軸,y軸分別交于點A(﹣1,0)和點B,與反比例函數(shù)y=的圖象在第一象限內交于點C(1,n).求一次函數(shù)y=kx+2與反比例函數(shù)y=的表達式;過x軸上的點D(a,0)作平行于y軸的直線l(a>1),分別與直線y=kx+2和雙曲線y=交于P、Q兩點,且PQ=2QD,求點D的坐標.24.(14分)已知四邊形ABCD是⊙O的內接四邊形,AC是⊙O的直徑,DE⊥AB,垂足為E(1)延長DE交⊙O于點F,延長DC,F(xiàn)B交于點P,如圖1.求證:PC=PB;(2)過點B作BG⊥AD,垂足為G,BG交DE于點H,且點O和點A都在DE的左側,如圖2.若AB=,DH=1,∠OHD=80°,求∠BDE的大?。?/p>

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

直接利用圓周角定理結合三角形的外角的性質即可得.【詳解】連接BE,如圖所示:

∵∠ACB=∠AEB,

∠AEB>∠D,

∴∠C>∠D.

故選:A.【點睛】考查了圓周角定理以及三角形的外角,正確作出輔助線是解題關鍵.2、C【解析】

根據(jù)中位數(shù)的定義解答即可.【詳解】解:在這15個數(shù)中,處于中間位置的第8個數(shù)是1.1,所以中位數(shù)是1.1.

所以這些運動員跳高成績的中位數(shù)是1.1.

故選:C.【點睛】本題考查了中位數(shù)的意義.中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).3、A【解析】解:△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=∠AOB=60°;故選A.4、A【解析】

解:的倒數(shù)是.故選A.【點睛】本題考查倒數(shù),掌握概念正確計算是解題關鍵.5、A【解析】分析:根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義,在數(shù)軸上,點﹣2到原點的距離是2,所以﹣2的絕對值是2,故選A.6、B【解析】

根據(jù)第四象限內點的橫坐標是正數(shù),縱坐標是負數(shù)列出不等式組,然后求解即可.【詳解】解:∵點A(m-1,1-2m)在第四象限,

∴解不等式①得,m>1,

解不等式②得,m>所以,不等式組的解集是m>1,

即m的取值范圍是m>1.

故選B.【點睛】本題考查各象限內點的坐標的符號特征以及解不等式,記住各象限內點的坐標的符號是解決的關鍵,四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、B【解析】試題分析:∵從半徑為9cm的圓形紙片上剪去圓周的一個扇形,∴留下的扇形的弧長==12π,根據(jù)底面圓的周長等于扇形弧長,∴圓錐的底面半徑r==6cm,∴圓錐的高為=3cm故選B.考點:圓錐的計算.8、D【解析】

由AB的垂直平分MN交AC于D,根據(jù)線段垂直平分線的性質,即可求得AD=BD,又由△CDB的周長為:BC+CD+BD=BC+CD+AD=BC+AC,即可求得答案.【詳解】解:∵MN是線段AB的垂直平分線,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周長=AC+BC=10+6=16,故選D.【點睛】此題考查了線段垂直平分線的性質,比較簡單,注意數(shù)形結合思想與轉化思想的應用.9、A【解析】【分析】整理成一般式后,根據(jù)方程有兩個相等的實數(shù)根,可得△=0,得到關于a的方程,解方程即可得.【詳解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有兩個相等的實數(shù)根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故選A.【點睛】本題考查一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.10、D【解析】

找到從正面、左面、上看所得到的圖形即可,注意所有的看到的棱都應表現(xiàn)在視圖中.【詳解】解:此幾何體的主視圖有兩排,從上往下分別有1,3個正方形;

左視圖有二列,從左往右分別有2,1個正方形;

俯視圖有三列,從上往下分別有3,1個正方形,

故選A.【點睛】本題考查了三視圖的知識,關鍵是掌握三視圖所看的位置.掌握定義是關鍵.此題主要考查了簡單組合體的三視圖,準確把握觀察角度是解題關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關系入手,設袋中有x個紅球,列出方程=20%,求得x=1.

故答案為1.點睛:此題主要考查了利用頻率估計概率,本題利用了用大量試驗得到的頻率可以估計事件的概率.關鍵是根據(jù)紅球的頻率得到相應的等量關系.12、60°【解析】

根據(jù)題意可得,根據(jù)已知條件計算即可.【詳解】根據(jù)題意可得:,故答案為60°【點睛】本題主要考查旋轉角的有關計算,關鍵在于識別那個是旋轉角.13、1【解析】分析:由圖形可知,內部小三角形直角邊是大三角形直角邊平移得到的,故內部五個小直角三角形的周長為大直角三角形的周長.詳解:由圖形可以看出:內部小三角形直角邊是大三角形直角邊平移得到的,故內部五個小直角三角形的周長為AC+BC+AB=1.故答案為1.點睛:本題主要考查了平移的性質,需要注意的是:平移前后圖形的大小、形狀都不改變.14、1.【解析】

由“直角三角形斜邊上的中線等于斜邊的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理來求線段CD的長度即可.【詳解】∵△ABC中,CD⊥AB于D,E是AC的中點,DE=5,∴DE=AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,則根據(jù)勾股定理,得.故答案是:1.15、50°.【解析】

根據(jù)線段垂直平分線上的點到兩端點的距離相等可得AD=BD,根據(jù)等邊對等角可得∠A=∠ABD,然后表示出∠ABC,再根據(jù)等腰三角形兩底角相等可得∠C=∠ABC,然后根據(jù)三角形的內角和定理列出方程求解即可:【詳解】∵MN是AB的垂直平分線,∴AD="BD."∴∠A=∠ABD.∵∠DBC=15°,∴∠ABC=∠A+15°.∵AB=AC,∴∠C=∠ABC=∠A+15°.∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故答案為50°.16、【解析】

(1)直接利用分式乘方運算法則計算得出答案;(2)直接利用分式除法運算法則計算得出答案.【詳解】(1)()2=;故答案為;(2)==.故答案為.【點睛】此題主要考查了分式的乘除法運算,正確掌握運算法則是解題關鍵.17、①③⑤.【解析】試題分析:①連接CD,如圖1所示,∵點E與點D關于AC對稱,∴CE=CD,∴∠E=∠CDE,∵DF⊥DE,∴∠EDF=90°,∴∠E+∠F=90°,∠CDE+∠CDF=90°,∴∠F=∠CDF,∴CD=CF,∴CE=CD=CF,∴結論“CE=CF”正確;②當CD⊥AB時,如圖2所示,∵AB是半圓的直徑,∴∠ACB=90°,∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=.∵CD⊥AB,∠CBA=30°,∴CD=BC=.根據(jù)“點到直線之間,垂線段最短”可得:點D在線段AB上運動時,CD的最小值為.∵CE=CD=CF,∴EF=2CD.∴線段EF的最小值為.∴結論“線段EF的最小值為”錯誤;③當AD=2時,連接OC,如圖3所示,∵OA=OC,∠CAB=60°,∴△OAC是等邊三角形,∴CA=CO,∠ACO=60°,∵AO=4,AD=2,∴DO=2,∴AD=DO,∴∠ACD=∠OCD=30°,∵點E與點D關于AC對稱,∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF經(jīng)過半徑OC的外端,且OC⊥EF,∴EF與半圓相切,∴結論“EF與半圓相切”正確;④當點F恰好落在上時,連接FB、AF,如圖4所示,∵點E與點D關于AC對稱,∴ED⊥AC,∴∠AGD=90°,∴∠AGD=∠ACB,∴ED∥BC,∴△FHC∽△FDE,∴FH:FD=FC:FE,∵FC=EF,∴FH=FD,∴FH=DH,∵DE∥BC,∴∠FHC=∠FDE=90°,∴BF=BD,∴∠FBH=∠DBH=30°,∴∠FBD=60°,∵AB是半圓的直徑,∴∠AFB=90°,∴∠FAB=30°,∴FB=AB=4,∴DB=4,∴AD=AB﹣DB=4,∴結論“AD=”錯誤;⑤∵點D與點E關于AC對稱,點D與點F關于BC對稱,∴當點D從點A運動到點B時,點E的運動路徑AM與AB關于AC對稱,點F的運動路徑NB與AB關于BC對稱,∴EF掃過的圖形就是圖5中陰影部分,∴S陰影=2S△ABC=2×AC?BC=AC?BC=4×=,∴EF掃過的面積為,∴結論“EF掃過的面積為”正確.故答案為①③⑤.考點:1.圓的綜合題;2.等邊三角形的判定與性質;3.切線的判定;4.相似三角形的判定與性質.三、解答題(共7小題,滿分69分)18、(1)參與問卷調查的總人數(shù)為500人;(2)補全條形統(tǒng)計圖見解析;(3)這些人中最喜歡微信支付方式的人數(shù)約為2800人.【解析】

(1)根據(jù)喜歡支付寶支付的人數(shù)÷其所占各種支付方式的比例=參與問卷調查的總人數(shù),即可求出結論;

(2)根據(jù)喜歡現(xiàn)金支付的人數(shù)(41~60歲)=參與問卷調查的總人數(shù)×現(xiàn)金支付所占各種支付方式的比例-15,即可求出喜歡現(xiàn)金支付的人數(shù)(41~60歲),再將條形統(tǒng)計圖補充完整即可得出結論;

(3)根據(jù)喜歡微信支付方式的人數(shù)=社區(qū)居民人數(shù)×微信支付所占各種支付方式的比例,即可求出結論.【詳解】(1)(人.答:參與問卷調查的總人數(shù)為500人.(2)(人.補全條形統(tǒng)計圖,如圖所示.(3)(人.答:這些人中最喜歡微信支付方式的人數(shù)約為2800人.【點睛】本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用樣本估計總體,解題的關鍵是:(1)觀察統(tǒng)計圖找出數(shù)據(jù),再列式計算;(2)通過計算求出喜歡現(xiàn)金支付的人數(shù)(41~60歲);(3)根據(jù)樣本的比例×總人數(shù),估算出喜歡微信支付方式的人數(shù).19、(1)證明詳見解析;(2)S=56(m+1)2+152(m>【解析】試題分析:(1)利用兩點間的距離公式計算出AB=5,則AB=OA,則可根據(jù)“HL”證明△ABC≌△AOD;(2)過點B作直線BE⊥直線y=﹣m于E,作AF⊥BE于F,如圖,證明Rt△ABF∽Rt△BCE,利用相似比可得BC=53(m+1),再在Rt△ACB中,由勾股定理得AC2=AB2+BC2=25+259(m+1)2,然后證明△AOB∽△ACD,利用相似的性質得S△AOBS△ACD=(ABAC)2,而S△AOB(2)作BH⊥y軸于H,如圖,分類討論:當AB∥CD時,則∠ACD=∠CAB,由△AOB∽△ACD得∠ACD=∠AOB,所以∠CAB=∠AOB,利用三角函數(shù)得到tan∠AOB=2,tan∠ACB=ABBC=3m+1,所以3m+1=2;當AD∥BC,則∠5=∠ACB,由△AOB∽△ACD得到∠4=∠5,則∠ACB=∠4,根據(jù)三角函數(shù)定義得到tan∠4=34,tan∠ACB=試題解析:(1)證明:∵A(0,5),B(2,1),∴AB=32∴AB=OA,∵AB⊥BC,∴∠ABC=90°,在Rt△ABC和Rt△AOD中,AB=AOAC=AD∴Rt△ABC≌Rt△AOD;(2)解:過點B作直線BE⊥直線y=﹣m于E,作AF⊥BE于F,如圖,∵∠1+∠2=90°,∠1+∠2=90°,∴∠2=∠2,∴Rt△ABF∽Rt△BCE,∴ABBC=AF∴BC=53在Rt△ACB中,AC2=AB2+BC2=25+259(m+1)2∵△ABC≌△AOD,∴∠BAC=∠OAD,即∠4+∠OAC=∠OAC+∠5,∴∠4=∠5,而AO=AB,AD=AC,∴△AOB∽△ACD,∴S△AOBS△ACD而S△AOB=12×5×2=15∴S=56(m+1)2+152(m>(2)作BH⊥y軸于H,如圖,當AB∥CD時,則∠ACD=∠CAB,而△AOB∽△ACD,∴∠ACD=∠AOB,∴∠CAB=∠AOB,而tan∠AOB=BHOH=2,tan∠ACB=ABBC=55∴3m+1當AD∥BC,則∠5=∠ACB,而△AOB∽△ACD,∴∠4=∠5,∴∠ACB=∠4,而tan∠4=BHAH=3∴3m+1=3解得m=2.綜上所述,m的值為2或1.考點:相似形綜合題.20、(1)3;(2),理由見解析;理由見解析(3)不存在,理由見解析【解析】

(1)將n=4代入n2-2n-5中即可求解;(2)當n=1,2,3,…,9,…,時對應的數(shù)分別為3×1-2,3×2-2,3×3-2,…,3×9-2…,由此可歸納出第n個數(shù)是3n-2;(3)“在這兩組數(shù)中,是否存在同一列上的兩個數(shù)相等”,將問題轉換為n2-2n-5=3n-2有無正整數(shù)解的問題.【詳解】解:(1))∵A組第n個數(shù)為n2-2n-5,∴A組第4個數(shù)是42-2×4-5=3,故答案為3;(2)第n個數(shù)是.理由如下:∵第1個數(shù)為1,可寫成3×1-2;第2個數(shù)為4,可寫成3×2-2;第3個數(shù)為7,可寫成3×3-2;第4個數(shù)為10,可寫成3×4-2;……第9個數(shù)為25,可寫成3×9-2;∴第n個數(shù)為3n-2;故答案為3n-2;(3)不存在同一位置上存在兩個數(shù)據(jù)相等;由題意得,,解之得,由于是正整數(shù),所以不存在列上兩個數(shù)相等.【點睛】本題考查了數(shù)字的變化類,正確的找出規(guī)律是解題的關鍵.21、(1)作圖見解析(2)為等腰三角形【解析】

(1)作角平分線,以B點為圓心,任意長為半徑,畫圓弧;交直線AB于1點,直線BC于2點,再以2點為圓心,任意長為半徑,畫圓弧,再以1點為圓心,任意長為半徑,畫圓弧,相交于3點,連接3點和O點,直線3O即是已知角AOB的對稱中心線.(2)分別求出的三個角,看是否有兩個角相等,進而判斷是否為等腰三角形.【詳解】(1)具體如下:(2)在等腰中,,BD為∠ABC的平分線,故,,那么在中,∵∴是否為等腰三角形.【點睛】本題考查角平分線的作法,以及判定等腰三角形的方法.熟悉了解角平分線的定義以及等腰三角形的判定方法是解題的關鍵所在.22、水壩原來的高度為12米【解析】試題分析:設BC=x米,用x表示出AB的長,利用坡度的定義得到BD=BE,進而列出x的方程,求出x的值即可.試題解析:設BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+,解得x=12,即BC=12,答:水壩原來的高度為12米..考點:解直角三角形的應用,坡度.23、一次函數(shù)解析式為;反比例函數(shù)解析式為;.【解析】

(1)根據(jù)A(-1,0)代入y=kx+2,即可得到k的值;(2)把C(1,n)代入y=2x+2,可得C(1,4),代入反比例函數(shù)得到m的值;(3)先根據(jù)D(a,0),PD∥y軸,即可得出P(a,2a+2),Q(a,),再根據(jù)PQ=2QD,即可得,進而求得D點的坐標.【詳解】(1)把A(﹣1,0)代入y=kx+2得﹣k+2=0,解得k=2,∴一次函數(shù)解析式為y=2x+2;把C(1,n)代入y=2x+2得n=4,∴C(1,4),把C(1,4)代入y=得m=1×4=4,∴反比例函數(shù)解析式為y=;(2)∵PD∥y軸,而D(a,0),∴P(a,2a+2),Q(a,),∵PQ=2QD,∴2a+2﹣=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論