![2025屆江蘇省常熟市全國新課標II卷高考數(shù)學試題最后一模含解析_第1頁](http://file4.renrendoc.com/view8/M00/29/28/wKhkGWbRZxyAadvQAAHDk2FMe-k867.jpg)
![2025屆江蘇省常熟市全國新課標II卷高考數(shù)學試題最后一模含解析_第2頁](http://file4.renrendoc.com/view8/M00/29/28/wKhkGWbRZxyAadvQAAHDk2FMe-k8672.jpg)
![2025屆江蘇省常熟市全國新課標II卷高考數(shù)學試題最后一模含解析_第3頁](http://file4.renrendoc.com/view8/M00/29/28/wKhkGWbRZxyAadvQAAHDk2FMe-k8673.jpg)
![2025屆江蘇省常熟市全國新課標II卷高考數(shù)學試題最后一模含解析_第4頁](http://file4.renrendoc.com/view8/M00/29/28/wKhkGWbRZxyAadvQAAHDk2FMe-k8674.jpg)
![2025屆江蘇省常熟市全國新課標II卷高考數(shù)學試題最后一模含解析_第5頁](http://file4.renrendoc.com/view8/M00/29/28/wKhkGWbRZxyAadvQAAHDk2FMe-k8675.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆江蘇省常熟市全國新課標II卷高考數(shù)學試題最后一模注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓+=1(a>b>0)與直線交于A,B兩點,焦點F(0,-c),其中c為半焦距,若△ABF是直角三角形,則該橢圓的離心率為()A. B. C. D.2.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=03.已知集合,,則等于()A. B. C. D.4.如圖是一個幾何體的三視圖,則該幾何體的體積為()A. B. C. D.5.某網(wǎng)店2019年全年的月收支數(shù)據(jù)如圖所示,則針對2019年這一年的收支情況,下列說法中錯誤的是()A.月收入的極差為60 B.7月份的利潤最大C.這12個月利潤的中位數(shù)與眾數(shù)均為30 D.這一年的總利潤超過400萬元6.將函數(shù)的圖象先向右平移個單位長度,在把所得函數(shù)圖象的橫坐標變?yōu)樵瓉淼谋?,縱坐標不變,得到函數(shù)的圖象,若函數(shù)在上沒有零點,則的取值范圍是()A. B.C. D.7.若表示不超過的最大整數(shù)(如,,),已知,,,則()A.2 B.5 C.7 D.88.數(shù)列滿足,且,,則()A. B.9 C. D.79.已知集合,,則為()A. B. C. D.10.若雙曲線:()的一個焦點為,過點的直線與雙曲線交于、兩點,且的中點為,則的方程為()A. B. C. D.11.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.12.下圖所示函數(shù)圖象經(jīng)過何種變換可以得到的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位二、填空題:本題共4小題,每小題5分,共20分。13.已知平面向量,的夾角為,且,則=____14.的展開式中的常數(shù)項為______.15.已知正數(shù)a,b滿足a+b=1,則的最小值等于__________,此時a=____________.16.小李參加有關(guān)“學習強國”的答題活動,要從4道題中隨機抽取2道作答,小李會其中的三道題,則抽到的2道題小李都會的概率為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,角,,的對邊分別為,,,已知.(1)若,,成等差數(shù)列,求的值;(2)是否存在滿足為直角?若存在,求的值;若不存在,請說明理由.18.(12分)的內(nèi)角,,的對邊分別為,,,其面積記為,滿足.(1)求;(2)若,求的值.19.(12分)如圖,四棱錐的底面ABCD是正方形,為等邊三角形,M,N分別是AB,AD的中點,且平面平面ABCD.(1)證明:平面PNB;(2)問棱PA上是否存在一點E,使平面DEM,求的值20.(12分)某社區(qū)服務中心計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶5元,售價每瓶7元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:攝氏度℃)有關(guān).如果最高氣溫不低于25,需求量為600瓶;如果最高氣溫位于區(qū)間,需求量為500瓶;如果最高氣溫低于20,需求量為300瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數(shù)據(jù),得下面的頻數(shù)分布表:最高氣溫天數(shù)414362763以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量(單位:瓶)的分布列;(2)設(shè)六月份一天銷售這種酸奶的利潤為(單位:元),當六月份這種酸奶一天的進貨量為(單位:瓶)時,的數(shù)學期望的取值范圍?21.(12分)已知,,分別是三個內(nèi)角,,的對邊,.(1)求;(2)若,,求,.22.(10分)如圖1,四邊形是邊長為2的菱形,,為的中點,以為折痕將折起到的位置,使得平面平面,如圖2.(1)證明:平面平面;(2)求點到平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
聯(lián)立直線與橢圓方程求出交點A,B兩點,利用平面向量垂直的坐標表示得到關(guān)于的關(guān)系式,解方程求解即可.【詳解】聯(lián)立方程,解方程可得或,不妨設(shè)A(0,a),B(-b,0),由題意可知,·=0,因為,,由平面向量垂直的坐標表示可得,,因為,所以a2-c2=ac,兩邊同時除以可得,,解得e=或(舍去),所以該橢圓的離心率為.故選:A本題考查橢圓方程及其性質(zhì)、離心率的求解、平面向量垂直的坐標表示;考查運算求解能力和知識遷移能力;利用平面向量垂直的坐標表示得到關(guān)于的關(guān)系式是求解本題的關(guān)鍵;屬于中檔題、??碱}型.2.A【解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點評:本題考查了雙曲線的漸進方程,把雙曲線的標準方程中的“1”轉(zhuǎn)化成“1”即可求出漸進方程.屬于基礎(chǔ)題.3.B【解析】
解不等式確定集合,然后由補集、并集定義求解.【詳解】由題意或,∴,.故選:B.本題考查集合的綜合運算,以及一元二次不等式的解法,屬于基礎(chǔ)題型.4.A【解析】
根據(jù)三視圖可得幾何體為直三棱柱,根據(jù)三視圖中的數(shù)據(jù)直接利用公式可求體積.【詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.本題考查三視圖及棱柱的體積,屬于基礎(chǔ)題.5.D【解析】
直接根據(jù)折線圖依次判斷每個選項得到答案.【詳解】由圖可知月收入的極差為,故選項A正確;1至12月份的利潤分別為20,30,20,10,30,30,60,40,30,30,50,30,7月份的利潤最高,故選項B正確;易求得總利潤為380萬元,眾數(shù)為30,中位數(shù)為30,故選項C正確,選項D錯誤.故選:.本題考查了折線圖,意在考查學生的理解能力和應用能力.6.A【解析】
根據(jù)y=Acos(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,根據(jù)定義域求出的范圍,再利用余弦函數(shù)的圖象和性質(zhì),求得ω的取值范圍.【詳解】函數(shù)的圖象先向右平移個單位長度,可得的圖象,再將圖象上每個點的橫坐標變?yōu)樵瓉淼谋?縱坐標不變),得到函數(shù)的圖象,∴周期,若函數(shù)在上沒有零點,∴,∴,,解得,又,解得,當k=0時,解,當k=-1時,,可得,.故答案為:A.本題考查函數(shù)y=Acos(ωx+φ)的圖象變換及零點問題,此類問題通常采用數(shù)形結(jié)合思想,構(gòu)建不等關(guān)系式,求解可得,屬于較難題.7.B【解析】
求出,,,,,,判斷出是一個以周期為6的周期數(shù)列,求出即可.【詳解】解:.,∴,,,同理可得:;;.;,,…….∴.故是一個以周期為6的周期數(shù)列,則.故選:B.本題考查周期數(shù)列的判斷和取整函數(shù)的應用.8.A【解析】
先由題意可得數(shù)列為等差數(shù)列,再根據(jù),,可求出公差,即可求出.【詳解】數(shù)列滿足,則數(shù)列為等差數(shù)列,,,,,,,故選:.本題主要考查了等差數(shù)列的性質(zhì)和通項公式的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.9.C【解析】
分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C本題考查對數(shù)函數(shù)的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.10.D【解析】
求出直線的斜率和方程,代入雙曲線的方程,運用韋達定理和中點坐標公式,結(jié)合焦點的坐標,可得的方程組,求得的值,即可得到答案.【詳解】由題意,直線的斜率為,可得直線的方程為,把直線的方程代入雙曲線,可得,設(shè),則,由的中點為,可得,解答,又由,即,解得,所以雙曲線的標準方程為.故選:D.本題主要考查了雙曲線的標準方程的求解,其中解答中屬于運用雙曲線的焦點和聯(lián)立方程組,合理利用根與系數(shù)的關(guān)系和中點坐標公式是解答的關(guān)鍵,著重考查了推理與運算能力.11.D【解析】
直接利用復數(shù)的模的求法的運算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項:本題考查復數(shù)的模的運算法則的應用,復數(shù)的模的求法,考查計算能力.12.D【解析】
根據(jù)函數(shù)圖像得到函數(shù)的一個解析式為,再根據(jù)平移法則得到答案.【詳解】設(shè)函數(shù)解析式為,根據(jù)圖像:,,故,即,,,取,得到,函數(shù)向右平移個單位得到.故選:.本題考查了根據(jù)函數(shù)圖像求函數(shù)解析式,三角函數(shù)平移,意在考查學生對于三角函數(shù)知識的綜合應用.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
根據(jù)平面向量模的定義先由坐標求得,再根據(jù)平面向量數(shù)量積定義求得;將化簡并代入即可求得.【詳解】,則,平面向量,的夾角為,則由平面向量數(shù)量積定義可得,根據(jù)平面向量模的求法可知,代入可得,解得,故答案為:1.本題考查了平面向量模的求法及簡單應用,平面向量數(shù)量積的定義及運算,屬于基礎(chǔ)題.14.160【解析】
先求的展開式中通項,令的指數(shù)為3即可求解結(jié)論.【詳解】解:因為的展開式的通項公式為:;令,可得;的展開式中的常數(shù)項為:.故答案為:160.本題考查二項式系數(shù)的性質(zhì),關(guān)鍵是熟記二項展開式的通項,屬于基礎(chǔ)題.15.3【解析】
根據(jù)題意,分析可得,由基本不等式的性質(zhì)可得最小值,進而分析基本不等式成立的條件可得a的值,即可得答案.【詳解】根據(jù)題意,正數(shù)a、b滿足,則,當且僅當時,等號成立,故的最小值為3,此時.故答案為:3;.本題考查基本不等式及其應用,考查轉(zhuǎn)化與化歸能力,屬于基礎(chǔ)題.16.【解析】
從四道題中隨機抽取兩道共6種情況,抽到的兩道全都會的情況有3種,即可得到概率.【詳解】由題:從從4道題中隨機抽取2道作答,共有種,小李會其中的三道題,則抽到的2道題小李都會的情況共有種,所以其概率為.故答案為:此題考查根據(jù)古典概型求概率,關(guān)鍵在于根據(jù)題意準確求出基本事件的總數(shù)和某一事件包含的基本事件個數(shù).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.見解析【解析】
(1)因為,,成等差數(shù)列,所以,由余弦定理可得,因為,所以,即,所以.(2)若B為直角,則,,由及正弦定理可得,所以,即,上式兩邊同時平方,可得,所以(*).又,所以,,所以,與(*)矛盾,所以不存在滿足為直角.18.(1);(2)【解析】
(1)根據(jù)三角形面積公式及平面向量數(shù)量積定義代入公式,即可求得,進而求得的值;(2)根據(jù)正弦定理將邊化為角,結(jié)合(1)中的值,即可將表達式化為的三角函數(shù)式;結(jié)合正弦和角公式與輔助角公式化簡,即可求得和,進而由正弦定理確定,代入整式即可求解.【詳解】(1)因為,所以由三角形面積公式及平面向量數(shù)量積運算可得,所以.因為,所以.(2)因為,所以由正弦定理代入化簡可得,由(1),代入可得,展開化簡可得,根據(jù)輔助角公式化簡可得.因為,所以,所以,所以為等腰三角形,且,所以.本題考查了正弦定理在解三角形中的應用,三角形面積公式的應用,平面向量數(shù)量積的運算,正弦和角公式及輔助角公式的簡單應用,屬于基礎(chǔ)題.19.(1)證明見解析;(2)存在,.【解析】
(1)根據(jù)題意證出,,再由線面垂直的判定定理即可證出.(2)連接AC交DM于點Q,連接EQ,利用線面平行的性質(zhì)定理可得,從而可得,在正方形ABCD中,由即可求解.【詳解】(1)證明:在正方形ABCD中,M,N分別是AB,AD的中點,∴,,.∴.∴.又,∴,∴.∵為等邊三角形,N是AD的中點,∴.又平面平面ABCD,平面PAD,平面平面,∴平面ABCD.又平面ABCD,∴.∵平面PNB,,∴平面PNB.(2)解:存在.如圖,連接AC交DM于點Q,連接EQ.∵平面DEM,平面PAC,平面平面,∴.∴.在正方形ABCD中,,且.∴,∴.故.所以棱PA上存在點E,使平面DEM,此時,E是棱A的靠近點A的三等分點.本題考查了線面垂直的判定定理、線面平行的性質(zhì)定理,考查了學生的推理能力以及空間想象能力,屬于空間幾何中的基礎(chǔ)題.20.(1)見解析;(2)【解析】
(1)X的可能取值為300,500,600,結(jié)合題意及表格數(shù)據(jù)計算對應概率,即得解;(2)由題意得,分,及,分別得到y(tǒng)與n的函數(shù)關(guān)系式,得到對應的分布列,分析即得解.【詳解】(1)由題意:X的可能取值為300,500,600故:六月份這種酸奶一天的需求量(單位:瓶)的分布列為300500600(2)由題意得.1°.當時,利潤此時利潤的分布列為.2.時,利潤此時利潤的分布列為.綜上的數(shù)學期望的取值范圍是.本題考查了函數(shù)與概率統(tǒng)計綜合,考查了學生綜合分析,數(shù)據(jù)處理,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.21.(1);(2),或,.【解析】
(1)利用正弦定理,轉(zhuǎn)化原式為,結(jié)合,可得,即得解;(2)由余弦定理,結(jié)合題中數(shù)據(jù),可得解【詳解】(1)由及正弦定理得.因為,所以,代入上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生活化教學法在小學語文課外閱讀中的運用
- 電動汽車安全駕駛規(guī)范及宣傳教育
- 現(xiàn)代企業(yè)戰(zhàn)略管理與規(guī)劃的核心理念
- 那樹教學聽評課研討記錄
- 現(xiàn)代企業(yè)財務管理與信息化建設(shè)的融合
- 電子商務物流中的政府管理與維護策略研究
- 電商平臺的數(shù)據(jù)分析與智能決策
- 電子商務中的支付安全與風險控制
- 電子商務物流的智能分揀系統(tǒng)優(yōu)化
- 現(xiàn)代職場人的職業(yè)規(guī)劃與理財方案
- 數(shù)學-河南省三門峽市2024-2025學年高二上學期1月期末調(diào)研考試試題和答案
- 2025年春新人教版數(shù)學七年級下冊教學課件
- 《心臟血管的解剖》課件
- 嘩啦啦庫存管理系統(tǒng)使用說明
- 小學生讀書卡模板
- 8.3 摩擦力 同步練習-2021-2022學年人教版物理八年級下冊(Word版含答案)
- 《現(xiàn)代漢語詞匯》PPT課件(完整版)
- 生理學教學大綱
- 環(huán)保鐵1215物質(zhì)安全資料表MSDS
- “君子教育”特色課程的探索
- AS9100D人力資源管理程序(范本)
評論
0/150
提交評論