2022年安徽省馬鞍山市重點中學中考五模數(shù)學試題含解析_第1頁
2022年安徽省馬鞍山市重點中學中考五模數(shù)學試題含解析_第2頁
2022年安徽省馬鞍山市重點中學中考五模數(shù)學試題含解析_第3頁
2022年安徽省馬鞍山市重點中學中考五模數(shù)學試題含解析_第4頁
2022年安徽省馬鞍山市重點中學中考五模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022年安徽省馬鞍山市重點中學中考五模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.1.桌面上放置的幾何體中,主視圖與左視圖可能不同的是()A.圓柱B.正方體C.球D.直立圓錐2.下列計算正確的是()A.a(chǎn)3﹣a2=a B.a(chǎn)2?a3=a6C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a63.如圖,一段拋物線:y=﹣x(x﹣5)(0≤x≤5),記為C1,它與x軸交于點O,A1;將C1繞點A1旋轉180°得C2,交x軸于點A2;將C2繞點A2旋轉180°得C3,交x軸于點A3;…如此進行下去,得到一“波浪線”,若點P(2018,m)在此“波浪線”上,則m的值為(

)A.4 B.﹣4 C.﹣6 D.64.如圖所示,如果將一副三角板按如圖方式疊放,那么∠1等于()A. B. C. D.5.在△ABC中,點D、E分別在AB、AC上,如果AD=2,BD=3,那么由下列條件能夠判定DE∥BC的是()A.= B.= C.= D.=6.如圖,能判定EB∥AC的條件是()A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC7.按一定規(guī)律排列的一列數(shù)依次為:﹣,1,﹣,、﹣、…,按此規(guī)律,這列數(shù)中的第100個數(shù)是()A.﹣ B. C. D.8.如圖,已知二次函數(shù)y=ax2+bx的圖象與正比例函數(shù)y=kx的圖象相交于點A(1,2),有下面四個結論:①ab>0;②a﹣b>﹣;③sinα=;④不等式kx≤ax2+bx的解集是0≤x≤1.其中正確的是()A.①② B.②③ C.①④ D.③④9.如圖1,在等邊△ABC中,D是BC的中點,P為AB邊上的一個動點,設AP=x,圖1中線段DP的長為y,若表示y與x的函數(shù)關系的圖象如圖2所示,則△ABC的面積為()A.4 B. C.12 D.10.下列實數(shù)中,在2和3之間的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=1DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正確結論的是_____.12.計算:6﹣=_____13.計算:sin30°﹣(﹣3)0=_____.14.將一副直角三角板如圖放置,使含30°角的三角板的短直角邊和含45°角的三角板的一條直角邊重合,則∠1的度數(shù)為__度.15.如圖,在網(wǎng)格中,小正方形的邊長均為1,點A、B、O都在格點上,則∠OAB的正弦值是_____.16.若代數(shù)式的值為零,則x=_____.17.如圖,在平面直角坐標系中,點O為原點,菱形OABC的對角線OB在x軸上,頂點A在反比例函數(shù)y=的圖象上,則菱形的面積為_____.三、解答題(共7小題,滿分69分)18.(10分)某同學用兩個完全相同的直角三角形紙片重疊在一起(如圖1)固定△ABC不動,將△DEF沿線段AB向右平移.(1)若∠A=60°,斜邊AB=4,設AD=x(0≤x≤4),兩個直角三角形紙片重疊部分的面積為y,試求出y與x的函數(shù)關系式;(2)在運動過程中,四邊形CDBF能否為正方形,若能,請指出此時點D的位置,并說明理由;若不能,請你添加一個條件,并說明四邊形CDBF為正方形?19.(5分)((1)計算:;(2)先化簡,再求值:,其中a=.20.(8分)如圖1,在平面直角坐標系中,O為坐標原點,拋物線y=ax2+bx+3交x軸于B、C兩點(點B在左,點C在右),交y軸于點A,且OA=OC,B(﹣1,0).(1)求此拋物線的解析式;(2)如圖2,點D為拋物線的頂點,連接CD,點P是拋物線上一動點,且在C、D兩點之間運動,過點P作PE∥y軸交線段CD于點E,設點P的橫坐標為t,線段PE長為d,寫出d與t的關系式(不要求寫出自變量t的取值范圍);(3)如圖3,在(2)的條件下,連接BD,在BD上有一動點Q,且DQ=CE,連接EQ,當∠BQE+∠DEQ=90°時,求此時點P的坐標.21.(10分)已知關于x的一元二次方程x2﹣(2k+1)x+k2+k=1.(1)求證:方程有兩個不相等的實數(shù)根;(2)當方程有一個根為1時,求k的值.22.(10分)如圖,M、N為山兩側的兩個村莊,為了兩村交通方便,根據(jù)國家的惠民政策,政府決定打一直線涵洞.工程人員為了計算工程量,必須計算M、N兩點之間的直線距離,選擇測量點A、B、C,點B、C分別在AM、AN上,現(xiàn)測得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N兩點之間的距離.23.(12分)如圖,在直角坐標系xOy中,直線與雙曲線相交于A(-1,a)、B兩點,BC⊥x軸,垂足為C,△AOC的面積是1.求m、n的值;求直線AC的解析式.24.(14分)計算﹣14﹣

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】試題分析:根據(jù)從正面看得到的視圖是主視圖,從左邊看得到的圖形是左視圖,從上面看得到的圖形是俯視圖,正方體主視圖與左視圖可能不同,故選B.考點:簡單幾何體的三視圖.2、D【解析】各項計算得到結果,即可作出判斷.解:A、原式不能合并,不符合題意;B、原式=a5,不符合題意;C、原式=a2﹣2ab+b2,不符合題意;D、原式=﹣a6,符合題意,故選D3、C【解析】分析:根據(jù)圖象的旋轉變化規(guī)律以及二次函數(shù)的平移規(guī)律得出平移后解析式,進而求出m的值,由2017÷5=403…2,可知點P(2018,m)在此“波浪線”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.詳解:當y=0時,﹣x(x﹣5)=0,解得x1=0,x2=5,則A1(5,0),∴OA1=5,∵將C1繞點A1旋轉180°得C2,交x軸于點A2;將C2繞點A2旋轉180°得C3,交x軸于點A3;…;如此進行下去,得到一“波浪線”,∴A1A2=A2A3=…=OA1=5,∴拋物線C404的解析式為y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),當x=2018時,y=(2018﹣2015)(2018﹣2020)=﹣1,即m=﹣1.故選C.點睛:此題主要考查了二次函數(shù)的平移規(guī)律,根據(jù)已知得出二次函數(shù)旋轉后解析式是解題關鍵.4、B【解析】解:如圖,∠2=90°﹣45°=45°,由三角形的外角性質得,∠1=∠2+60°=45°+60°=105°.故選B.點睛:本題考查了三角形的一個外角等于與它不相鄰的兩個內角的和的性質,熟記性質是解題的關鍵.5、D【解析】

根據(jù)平行線分線段成比例定理的逆定理,當或時,,然后可對各選項進行判斷.【詳解】解:當或時,,

即或.

所以D選項是正確的.【點睛】本題考查了平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例.也考查了平行線分線段成比例定理的逆定理.6、C【解析】

在復雜的圖形中具有相等關系的兩角首先要判斷它們是否是同位角或內錯角,被判斷平行的兩直線是否由“三線八角”而產(chǎn)生的被截直線.【詳解】A、∠C=∠ABE不能判斷出EB∥AC,故本選項錯誤;B、∠A=∠EBD不能判斷出EB∥AC,故本選項錯誤;C、∠A=∠ABE,根據(jù)內錯角相等,兩直線平行,可以得出EB∥AC,故本選項正確;D、∠C=∠ABC只能判斷出AB=AC,不能判斷出EB∥AC,故本選項錯誤.故選C.【點睛】本題考查了平行線的判定,正確識別“三線八角”中的同位角、內錯角、同旁內角是正確答題的關鍵,只有同位角相等、內錯角相等、同旁內角互補,才能推出兩被截直線平行.7、C【解析】

根據(jù)按一定規(guī)律排列的一列數(shù)依次為:,1,,,,…,可知符號規(guī)律為奇數(shù)項為負,偶數(shù)項為正;分母為3、7、9、……,型;分子為型,可得第100個數(shù)為.【詳解】按一定規(guī)律排列的一列數(shù)依次為:,1,,,,…,按此規(guī)律,奇數(shù)項為負,偶數(shù)項為正,分母為3、7、9、……,型;分子為型,可得第n個數(shù)為,∴當時,這個數(shù)為,故選:C.【點睛】本題屬于規(guī)律題,準確找出題目的規(guī)律并將特殊規(guī)律轉化為一般規(guī)律是解決本題的關鍵.8、B【解析】

根據(jù)拋物線圖象性質確定a、b符號,把點A代入y=ax2+bx得到a與b數(shù)量關系,代入②,不等式kx≤ax2+bx的解集可以轉化為函數(shù)圖象的高低關系.【詳解】解:根據(jù)圖象拋物線開口向上,對稱軸在y軸右側,則a>0,b<0,則①錯誤將A(1,2)代入y=ax2+bx,則2=9a+1b∴b=,∴a﹣b=a﹣()=4a﹣>-,故②正確;由正弦定義sinα=,則③正確;不等式kx≤ax2+bx從函數(shù)圖象上可視為拋物線圖象不低于直線y=kx的圖象則滿足條件x范圍為x≥1或x≤0,則④錯誤.故答案為:B.【點睛】二次函數(shù)的圖像,sinα公式,不等式的解集.9、D【解析】分析:由圖1、圖2結合題意可知,當DP⊥AB時,DP最短,由此可得DP最短=y最小=,這樣如圖3,過點P作PD⊥AB于點P,連接AD,結合△ABC是等邊三角形和點D是BC邊的中點進行分析解答即可.詳解:由題意可知:當DP⊥AB時,DP最短,由此可得DP最短=y最小=,如圖3,過點P作PD⊥AB于點P,連接AD,∵△ABC是等邊三角形,點D是BC邊上的中點,∴∠ABC=60°,AD⊥BC,∵DP⊥AB于點P,此時DP=,∴BD=,∴BC=2BD=4,∴AB=4,∴AD=AB·sin∠B=4×sin60°=,∴S△ABC=AD·BC=.故選D.點睛:“讀懂題意,知道當DP⊥AB于點P時,DP最短=”是解答本題的關鍵.10、C【解析】

分析:先求出每個數(shù)的范圍,逐一分析得出選項.詳解:A、3<π<4,故本選項不符合題意;

B、1<π?2<2,故本選項不符合題意;

C、2<<3,故本選項符合題意;

D、3<<4,故本選項不符合題意;故選C.點睛:本題考查了估算無理數(shù)的大小,能估算出每個數(shù)的范圍是解本題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、①②③【解析】

根據(jù)翻折變換的性質和正方形的性質可證Rt△ABG≌Rt△AFG;在直角△ECG中,根據(jù)勾股定理可證BG=GC;通過證明∠AGB=∠AGF=∠GFC=∠GCF,由平行線的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面積比較即可.【詳解】①正確.

理由:

∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正確.理由:EF=DE=CD=2,設BG=FG=x,則CG=6-x.在直角△ECG中,根據(jù)勾股定理,得(6-x)2+42=(x+2)2,解得x=1.∴BG=1=6-1=GC;③正確.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④錯誤.理由:∵S△GCE=GC?CE=×1×4=6

∵GF=1,EF=2,△GFC和△FCE等高,

∴S△GFC:S△FCE=1:2,

∴S△GFC=×6=≠1.

故④不正確.

∴正確的個數(shù)有1個:①②③.故答案為①②③【點睛】本題綜合性較強,考查了翻折變換的性質和正方形的性質,全等三角形的判定與性質,勾股定理,平行線的判定,三角形的面積計算,有一定的難度.12、3【解析】

按照二次根式的運算法則進行運算即可.【詳解】【點睛】本題考查的知識點是二次根式的運算,解題關鍵是注意化簡算式.13、-【解析】

sin30°=,a0=1(a≠0)【詳解】解:原式=-1=-故答案為:-.【點睛】本題考查了30°的角的正弦值和非零數(shù)的零次冪.熟記是關鍵.14、1.【解析】

根據(jù)一副直角三角板的各個角的度數(shù),結合三角形內角和定理,即可求解.【詳解】∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=1°.故答案為:1.【點睛】本題主要考查三角形的內角和定理以及對頂角的性質,掌握三角形的內角和等于180°,是解題的關鍵.15、【解析】

如圖,過點O作OC⊥AB的延長線于點C,則AC=4,OC=2,在Rt△ACO中,AO=,∴sin∠OAB=.故答案為.16、3【解析】由題意得,=0,解得:x=3,經(jīng)檢驗的x=3是原方程的根.17、1【解析】

連接AC交OB于D,由菱形的性質可知.根據(jù)反比例函數(shù)中k的幾何意義,得出△AOD的面積=1,從而求出菱形OABC的面積=△AOD的面積的4倍.【詳解】連接AC交OB于D.

四邊形OABC是菱形,

點A在反比例函數(shù)的圖象上,

的面積,

菱形OABC的面積=的面積=1.【點睛】本題考查的知識點是菱形的性質及反比例函數(shù)的比例系數(shù)k的幾何意義.解題關鍵是反比例函數(shù)圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系,即.三、解答題(共7小題,滿分69分)18、(1)y=(0≤x≤4);(2)不能為正方形,添加條件:AC=BC時,當點D運動到AB中點位置時四邊形CDBF為正方形.【解析】分析:(1)根據(jù)平移的性質得到DF∥AC,所以由平行線的性質、勾股定理求得GD=,BG==,所以由三角形的面積公式列出函數(shù)關系式;(2)不能為正方形,添加條件:AC=BC時,點D運動到AB中點時,四邊形CDBF為正方形;當D運動到AB中點時,四邊形CDBF是菱形,根據(jù)“直角三角形斜邊上的中線等于斜邊的一半”推知CD=AB,BF=DE,所以AD=CD=BD=CF,又有BE=AD,則CD=BD=BF=CF,故四邊形CDBF是菱形,根據(jù)有一內角為直角的菱形是正方形來添加條件.詳解:(1)如圖(1)∵DF∥AC,∴∠DGB=∠C=90°,∠GDB=∠A=60°,∠GBD=30°∵BD=4﹣x,∴GD=,BG==y=S△BDG=××=(0≤x≤4);(2)不能為正方形,添加條件:AC=BC時,當點D運動到AB中點位置時四邊形CDBF為正方形.∵∠ACB=∠DFE=90°,D是AB的中點∴CD=AB,BF=DE,∴CD=BD=BF=BE,∵CF=BD,∴CD=BD=BF=CF,∴四邊形CDBF是菱形;∵AC=BC,D是AB的中點.∴CD⊥AB即∠CDB=90°∵四邊形CDBF為菱形,∴四邊形CDBF是正方形.點睛:本題是幾何變換綜合題型,主要考查了平移變換的性質,勾股定理,正方形的判定,菱形的判定與性質以及直角三角形斜邊上的中線.(2)難度稍大,根據(jù)三角形斜邊上的中線推知CD=BD=BF=BE是解題的關鍵.19、(1)2016;(2)a(a﹣2),.【解析】試題分析:(1)分別根據(jù)0指數(shù)冪及負整數(shù)指數(shù)冪的計算法則、特殊角的三角函數(shù)值、絕對值的性質及數(shù)的開方法則計算出各數(shù),再根據(jù)實數(shù)混合運算的法則進行計算即可;(2)先算括號里面的,再算除法,最后把a的值代入進行計算即可.試題解析:(1)原式==2016;(2)原式====a(a﹣2),當a=時,原式==.20、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).【解析】

(1)由拋物線y=ax2+bx+3與y軸交于點A,可求得點A的坐標,又OA=OC,可求得點C的坐標,然后分別代入B,C的坐標求出a,b,即可求得二次函數(shù)的解析式;(2)首先延長PE交x軸于點H,現(xiàn)將解析式換為頂點解析式求得D(1,4),設直線CD的解析式為y=kx+b,再將點C(3,0)、D(1,4)代入,得y=﹣2x+6,則E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根據(jù)d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于點K,作QM∥x軸交DK于點T,延長PE、EP交OC于H、交QM于M,作ER⊥DK于點R,記QE與DK的交點為N,根據(jù)題意在(2)的條件下先證明△DQT≌△ECH,再根據(jù)全等三角形的性質即可得ME=4﹣2(﹣2t+6),QM=t﹣1+(3﹣t),即可求得答案.【詳解】解:(1)當x=0時,y=3,∴A(0,3)即OA=3,∵OA=OC,∴OC=3,∴C(3,0),∵拋物線y=ax2+bx+3經(jīng)過點B(﹣1,0),C(3,0)∴,解得:,∴拋物線的解析式為:y=﹣x2+2x+3;(2)如圖1,延長PE交x軸于點H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設直線CD的解析式為y=kx+b,將點C(3,0)、D(1,4)代入,得:,解得:,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;(3)如圖2,作DK⊥OC于點K,作QM∥x軸交DK于點T,延長PE、EP交OC于H、交QM于M,作ER⊥DK于點R,記QE與DK的交點為N,∵D(1,4),B(﹣1,0),C(3,0),∴BK=2,KC=2,∴DK垂直平分BC,∴BD=CD,∴∠BDK=∠CDK,∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,∴∠CDK+∠DEQ=45°,即∠RNE=45°,∵ER⊥DK,∴∠NER=45°,∴∠MEQ=∠MQE=45°,∴QM=ME,∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,∴△DQT≌△ECH,∴DT=EH,QT=CH,∴ME=4﹣2(﹣2t+6),QM=MT+QT=MT+CH=t﹣1+(3﹣t),4﹣2(﹣2t+6)=t﹣1+(3﹣t),解得:t=,∴P(,).【點睛】本題考查了二次函數(shù)的綜合題,解題的關鍵是熟練的掌握二次函數(shù)的相關知識點.21、(2)證明見解析;(2)k2=2,k2=2.【解析】

(2)套入數(shù)據(jù)求出△=b2﹣4ac的值,再與2作比較,由于△=2>2,從而證出方程有兩個不相等的實數(shù)根;(2)將x=2代入原方程,得出關于k的一元二次方程,解方程即可求出k的值.【詳解】(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論