




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省阜陽市潁上縣重點達標名校2022年中考數(shù)學最后沖刺濃縮精華卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.已知一次函數(shù)y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉181°,所得的圖象經過(1.﹣1),則m的值為()A.﹣2 B.﹣1 C.1 D.22.如圖,已知AC是⊙O的直徑,點B在圓周上(不與A、C重合),點D在AC的延長線上,連接BD交⊙O于點E,若∠AOB=3∠ADB,則()A.DE=EB B.DE=EB C.DE=DO D.DE=OB3.民族圖案是數(shù)學文化中的一塊瑰寶.下列圖案中,既不是中心對稱圖形也不是軸對稱圖形的是()
A. B. C. D.4.賓館有50間房供游客居住,當每間房每天定價為180元時,賓館會住滿;當每間房每天的定價每增加10元時,就會空閑一間房.如果有游客居住,賓館需對居住的每間房每天支出20元的費用.當房價定為多少元時,賓館當天的利潤為10890元?設房價比定價180元增加x元,則有()A.(x﹣20)(50﹣)=10890 B.x(50﹣)﹣50×20=10890C.(180+x﹣20)(50﹣)=10890 D.(x+180)(50﹣)﹣50×20=108905.一個不透明的袋中有四張完全相同的卡片,把它們分別標上數(shù)字1、2、3、1.隨機抽取一張卡片,然后放回,再隨機抽取一張卡片,則兩次抽取的卡片上數(shù)字之積為偶數(shù)的概率是()A. B. C. D.6.若分式有意義,則x的取值范圍是()A.x>3 B.x<3 C.x≠3 D.x=37.的相反數(shù)是()A. B.- C. D.-8.如圖,在中,,以邊的中點為圓心,作半圓與相切,點分別是邊和半圓上的動點,連接,則長的最大值與最小值的和是()A. B. C. D.9.如圖,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以點C為圓心,CB長為半徑作弧,交AB于點D;再分別以點B和點D為圓心,大于BD的長為半徑作弧,兩弧相交于點E,作射線CE交AB于點F,則AF的長為()A.5 B.6 C.7 D.810.有下列四個命題:①相等的角是對頂角;②兩條直線被第三條直線所截,同位角相等;③同一種正五邊形一定能進行平面鑲嵌;④垂直于同一條直線的兩條直線互相垂直.其中假命題的個數(shù)有()A.1個B.2個C.3個D.4個二、填空題(本大題共6個小題,每小題3分,共18分)11.不等式組的非負整數(shù)解的個數(shù)是_____.12.已知一組數(shù)據(jù)1,2,0,﹣1,x,1的平均數(shù)是1,則這組數(shù)據(jù)的中位數(shù)為_____.13.某花店有單位為10元、18元、25元三種價格的花卉,如圖是該花店某月三種花卉銷售量情況的扇形統(tǒng)計圖,根據(jù)該統(tǒng)計圖可算得該花店銷售花卉的平均單價為_____元.14.如圖,若點的坐標為,則=________.15.使有意義的x的取值范圍是______.16.如圖,在4×4正方形網格中,黑色部分的圖形構成一個軸對稱圖形,現(xiàn)在任選取一個白色的小正方形并涂黑,使圖中黑色部分的圖形仍然構成一個軸對稱圖形的概率是_____.三、解答題(共8題,共72分)17.(8分)某商場甲、乙、丙三名業(yè)務員2018年前5個月的銷售額(單位:萬元)如下表:月份銷售額人員第1月第2月第3月第4月第5月甲691088乙57899丙5910511(1)根據(jù)上表中的數(shù)據(jù),將下表補充完整:統(tǒng)計值數(shù)值人員平均數(shù)(萬元)眾數(shù)(萬元)中位數(shù)(萬元)方差甲881.76乙7.682.24丙85(2)甲、乙、丙三名業(yè)務員都說自己的銷售業(yè)績好,你贊同誰的說法?請說明理由.18.(8分)如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點D、E,且BF是⊙O的切線,BF交AC的延長線于F.(1)求證:∠CBF=∠CAB.(2)若AB=5,sin∠CBF=,求BC和BF的長.19.(8分)為了鞏固全國文明城市建設成果,突出城市品質的提升,近年來,某市積極落實節(jié)能減排政策,推行綠色建筑,據(jù)統(tǒng)計,該市2014年的綠色建筑面積約為950萬平方米,2016年達到了1862萬平方米.若2015年、2016年的綠色建筑面積按相同的增長率逐年遞增,請解答下列問題:求這兩年該市推行綠色建筑面積的年平均增長率;2017年該市計劃推行綠色建筑面積達到2400萬平方米.如果2017年仍保持相同的年平均增長率,請你預測2017年該市能否完成計劃目標.20.(8分)如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)y2=的圖象交于A(2,3),B(6,n)兩點.分別求出一次函數(shù)與反比例函數(shù)的解析式;求△OAB的面積.21.(8分)如圖,△ABC是等腰三角形,AB=AC,點D是AB上一點,過點D作DE⊥BC交BC于點E,交CA延長線于點F.證明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的長,22.(10分)如圖,矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線經過A、C兩點,與AB邊交于點D.(1)求拋物線的函數(shù)表達式;(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S.①求S關于m的函數(shù)表達式,并求出m為何值時,S取得最大值;②當S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.23.(12分)某校詩詞知識競賽培訓活動中,在相同條件下對甲、乙兩名學生進行了10次測驗,他們的10次成績如下(單位:分):整理、分析過程如下,請補充完整.(1)按如下分數(shù)段整理、描述這兩組數(shù)據(jù):成績x學生70≤x≤7475≤x≤7980≤x≤8485≤x≤8990≤x≤9495≤x≤100甲____________________________________乙114211(2)兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù)、眾數(shù)、方差如下表所示:學生極差平均數(shù)中位數(shù)眾數(shù)方差甲______83.7______8613.21乙2483.782______46.21(3)若從甲、乙兩人中選擇一人參加知識競賽,你會選______(填“甲”或“乙),理由為______.24.如圖,已知拋物線經過原點o和x軸上一點A(4,0),拋物線頂點為E,它的對稱軸與x軸交于點D.直線y=﹣2x﹣1經過拋物線上一點B(﹣2,m)且與y軸交于點C,與拋物線的對稱軸交于點F.(1)求m的值及該拋物線對應的解析式;(2)P(x,y)是拋物線上的一點,若S△ADP=S△ADC,求出所有符合條件的點P的坐標;(3)點Q是平面內任意一點,點M從點F出發(fā),沿對稱軸向上以每秒1個單位長度的速度勻速運動,設點M的運動時間為t秒,是否能使以Q、A、E、M四點為頂點的四邊形是菱形.若能,請直接寫出點M的運動時間t的值;若不能,請說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據(jù)題意得出旋轉后的函數(shù)解析式為y=-x-1,然后根據(jù)解析式求得與x軸的交點坐標,結合點的坐標即可得出結論.【詳解】∵一次函數(shù)y=﹣x+2的圖象,繞x軸上一點P(m,1)旋轉181°,所得的圖象經過(1.﹣1),∴設旋轉后的函數(shù)解析式為y=﹣x﹣1,在一次函數(shù)y=﹣x+2中,令y=1,則有﹣x+2=1,解得:x=4,即一次函數(shù)y=﹣x+2與x軸交點為(4,1).一次函數(shù)y=﹣x﹣1中,令y=1,則有﹣x﹣1=1,解得:x=﹣2,即一次函數(shù)y=﹣x﹣1與x軸交點為(﹣2,1).∴m==1,故選:C.【點睛】本題考查了一次函數(shù)圖象與幾何變換,解題的關鍵是求出旋轉后的函數(shù)解析式.本題屬于基礎題,難度不大.2、D【解析】
解:連接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故選D.3、C【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合.因此,A、不是軸對稱圖形,是中心對稱圖形,故本選項錯誤;B、是軸對稱圖形,也是中心對稱圖形,故本選項錯誤;C、不是軸對稱圖形,也不是中心對稱圖形,故本選項正確;D、是軸對稱圖形,也是中心對稱圖形,故本選項錯誤.故選C.4、C【解析】
設房價比定價180元増加x元,根據(jù)利潤=房價的凈利潤×入住的房同數(shù)可得.【詳解】解:設房價比定價180元增加x元,根據(jù)題意,得(180+x﹣20)(50﹣)=1.故選:C.【點睛】此題考查一元二次方程的應用問題,主要在于找到等量關系求解.5、C【解析】【分析】畫樹狀圖展示所有16種等可能的結果數(shù),再找出兩次抽取的卡片上數(shù)字之積為偶數(shù)的結果數(shù),然后根據(jù)概率公式求解.【詳解】畫樹狀圖為:共有16種等可能的結果數(shù),其中兩次抽取的卡片上數(shù)字之積為偶數(shù)的結果數(shù)為12,所以兩次抽取的卡片上數(shù)字之積為偶數(shù)的概率=,故選C.【點睛】本題考查了列表法與樹狀圖法求概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.6、C【解析】
試題分析:∵分式有意義,∴x﹣3≠0,∴x≠3;故選C.考點:分式有意義的條件.7、B【解析】∵+(﹣)=0,∴的相反數(shù)是﹣.故選B.8、C【解析】
如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,求出OP1,如圖當Q2在AB邊上時,P2與B重合時,P2Q2最大值=5+3=8,由此不難解決問題.【詳解】解:如圖,設⊙O與AC相切于點E,連接OE,作OP1⊥BC垂足為P1交⊙O于Q1,此時垂線段OP1最短,P1Q1最小值為OP1-OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=10°,∵∠OP1B=10°,∴OP1∥AC∵AO=OB,\∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值為OP1-OQ1=1,如圖,當Q2在AB邊上時,P2與B重合時,P2Q2經過圓心,經過圓心的弦最長,P2Q2最大值=5+3=8,∴PQ長的最大值與最小值的和是1.故選:C.【點睛】本題考查切線的性質、三角形中位線定理等知識,解題的關鍵是正確找到點PQ取得最大值、最小值時的位置,屬于中考??碱}型.9、B【解析】試題分析:連接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是線段BD的垂直平分線,∴CD是斜邊AB的中線,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故選B.考點:作圖—基本作圖;含30度角的直角三角形.10、D【解析】
根據(jù)對頂角的定義,平行線的性質以及正五邊形的內角及鑲嵌的知識,逐一判斷.【詳解】解:①對頂角有位置及大小關系的要求,相等的角不一定是對頂角,故為假命題;②只有當兩條平行直線被第三條直線所截,同位角相等,故為假命題;③正五邊形的內角和為540°,則其內角為108°,而360°并不是108°的整數(shù)倍,不能進行平面鑲嵌,故為假命題;④在同一平面內,垂直于同一條直線的兩條直線平行,故為假命題.故選:D.【點睛】本題考查了命題與證明.對頂角,垂線,同位角,鑲嵌的相關概念.關鍵是熟悉這些概念,正確判斷.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】
先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分即可得到不等式組的解集.【詳解】解:解①得:x≥﹣,解②得:x<1,∴不等式組的解集為﹣≤x<1,∴其非負整數(shù)解為0、1、2、3、4共1個,故答案為1.【點睛】本題考查了不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.不等式組解集的確定方法是:同大取大,同小取小,大小小大取中間,大大小小無解.12、2【解析】
解:這組數(shù)據(jù)的平均數(shù)為2,
有(2+2+0-2+x+2)=2,
可求得x=2.
將這組數(shù)據(jù)從小到大重新排列后,觀察數(shù)據(jù)可知最中間的兩個數(shù)是2與2,
其平均數(shù)即中位數(shù)是(2+2)÷2=2.
故答案是:2.13、17【解析】
根據(jù)餅狀圖求出25元所占比重為20%,再根據(jù)加權平均數(shù)求法即可解題.【詳解】解:1-30%-50%=20%,∴.【點睛】本題考查了加權平均數(shù)的計算方法,屬于簡單題,計算25元所占權比是解題關鍵.14、【解析】
根據(jù)勾股定理,可得OA的長,根據(jù)正弦是對邊比斜邊,可得答案.【詳解】如圖,由勾股定理,得:OA==1.sin∠1=,故答案為.15、【解析】二次根式有意義的條件.【分析】根據(jù)二次根式被開方數(shù)必須是非負數(shù)的條件,要使在實數(shù)范圍內有意義,必須.16、【解析】如圖,有5種不同取法;故概率為.三、解答題(共8題,共72分)17、(1)8.2;9;9;6.4;(2)贊同甲的說法.理由見解析.【解析】
(1)利用平均數(shù)、眾數(shù)、中位數(shù)的定義和方差的計算公式求解;(2)利用甲的平均數(shù)大得到總營業(yè)額高,方差小,營業(yè)額穩(wěn)定進行判斷.【詳解】(1)甲的平均數(shù);乙的眾數(shù)為9;丙的中位數(shù)為9,丙的方差;故答案為8.2;9;9;6.4;(2)贊同甲的說法.理由是:甲的平均數(shù)高,總營業(yè)額比乙、丙都高,每月的營業(yè)額比較穩(wěn)定.【點睛】本題考查了方差:方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小.記住方差的計算公式.也考查了平均數(shù)、眾數(shù)和中位數(shù).18、(1)證明略;(2)BC=,BF=.【解析】試題分析:(1)連結AE.有AB是⊙O的直徑可得∠AEB=90°再有BF是⊙O的切線可得BF⊥AB,利用同角的余角相等即可證明;(2)在Rt△ABE中有三角函數(shù)可以求出BE,又有等腰三角形的三線合一可得BC=2BE,過點C作CG⊥AB于點G.可求出AE,再在Rt△ABE中,求出sin∠2,cos∠2.然后再在Rt△CGB中求出CG,最后證出△AGC∽△ABF有相似的性質求出BF即可.試題解析:(1)證明:連結AE.∵AB是⊙O的直徑,∴∠AEB=90°,∴∠1+∠2=90°.∵BF是⊙O的切線,∴BF⊥AB,∴∠CBF+∠2=90°.∴∠CBF=∠1.∵AB=AC,∠AEB=90°,∴∠1=∠CAB.∴∠CBF=∠CAB.(2)解:過點C作CG⊥AB于點G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=.∵∠AEB=90°,AB=5.∴BE=AB·sin∠1=.∵AB=AC,∠AEB=90°,∴BC=2BE=.在Rt△ABE中,由勾股定理得.∴sin∠2=,cos∠2=.在Rt△CBG中,可求得GC=4,GB=2.∴AG=3.∵GC∥BF,∴△AGC∽△ABF.∴,∴.考點:切線的性質,相似的性質,勾股定理.19、(1)這兩年該市推行綠色建筑面積的年平均增長率為40%;(2)如果2017年仍保持相同的年平均增長率,2017年該市能完成計劃目標.【解析】試題分析:(1)設這兩年該市推行綠色建筑面積的年平均增長率x,根據(jù)2014年的綠色建筑面積約為700萬平方米和2016年達到了1183萬平方米,列出方程求解即可;(2)根據(jù)(1)求出的增長率問題,先求出預測2017年綠色建筑面積,再與計劃推行綠色建筑面積達到1500萬平方米進行比較,即可得出答案.試題解析:(1)設這兩年該市推行綠色建筑面積的年平均增長率為x,根據(jù)題意得:700(1+x)2=1183,解得:x1=0.3=30%,x2=﹣2.3(舍去),答:這兩年該市推行綠色建筑面積的年平均增長率為30%;(2)根據(jù)題意得:1183×(1+30%)=1537.9(萬平方米),∵1537.9>1500,∴2017年該市能完成計劃目標.【點睛】本題考查了一元二次方程的應用,解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件和增長率問題的數(shù)量關系,列出方程進行求解.20、(1)反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=﹣x+1.(2)2.【解析】
(1)根據(jù)反比例函數(shù)y2=的圖象過點A(2,3),利用待定系數(shù)法求出m,進而得出B點坐標,然后利用待定系數(shù)法求出一次函數(shù)解析式;(2)設直線y1=kx+b與x軸交于C,求出C點坐標,根據(jù)S△AOB=S△AOC﹣S△BOC,列式計算即可.【詳解】(1)∵反比例函數(shù)y2=的圖象過A(2,3),B(6,n)兩點,∴m=2×3=6n,∴m=6,n=1,∴反比例函數(shù)的解析式為y=,B的坐標是(6,1).把A(2,3)、B(6,1)代入y1=kx+b,得:,解得:,∴一次函數(shù)的解析式為y=﹣x+1.(2)如圖,設直線y=﹣x+1與x軸交于C,則C(2,0).S△AOB=S△AOC﹣S△BOC=×2×3﹣×2×1=12﹣1=2.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)、一次函數(shù)解析式以及求三角形面積等知識,根據(jù)已知得出B點坐標以及得出S△AOB=S△AOC﹣S△BOC是解題的關鍵.21、(1)見解析;(2)EC=1.【解析】
(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B=90°,然后余角的性質可推出∠F=∠BDE,再根據(jù)對頂角相等進行等量代換即可推出∠F=∠FDA,于是得到結論;(2)根據(jù)解直角三角形和等邊三角形的性質即可得到結論.【詳解】(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=1,∴BE=BD=2,∵AB=AC,∴△ABC是等邊三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=1.【點睛】本題主要考查等腰三角形的判定與性質、余角的性質、對頂角的性質等知識點,關鍵根據(jù)相關的性質定理,通過等量代換推出∠F=∠FDA,即可推出結論.22、(1);(2)①,當m=5時,S取最大值;②滿足條件的點F共有四個,坐標分別為,,,,【解析】
(1)將A、C兩點坐標代入拋物線y=-x2+bx+c,即可求得拋物線的解析式;
(2)①先用m表示出QE的長度,進而求出三角形的面積S關于m的函數(shù);
②直接寫出滿足條件的F點的坐標即可,注意不要漏寫.【詳解】解:(1)將A、C兩點坐標代入拋物線,得,解得:,∴拋物線的解析式為y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,過點Q作QE⊥BC與E點,則sin∠ACB===,∴=,∴QE=(10﹣m),∴S=?CP?QE=m×(10﹣m)=﹣m2+3m;②∵S=?CP?QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴當m=5時,S取最大值;在拋物線對稱軸l上存在點F,使△FDQ為直角三角形,∵拋物線的解析式為y=﹣x2+x+8的對稱軸為x=,D的坐標為(3,8),Q(3,4),當∠FDQ=90°時,F(xiàn)1(,8),當∠FQD=90°時,則F2(,4),當∠DFQ=90°時,設F(,n),則FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F(xiàn)4(,6﹣),滿足條件的點F共有四個,坐標分別為F1(,8),F(xiàn)2(,4),F(xiàn)3(,6+),F(xiàn)4(,6﹣).【點睛】本題考查二次函數(shù)的綜合應用能力,其中涉及到的知識點有拋物線的解析式的求法拋物線的最值等知識點,是各地中考的熱點和難點,解題時注意數(shù)形結合數(shù)學思想的運用,同學們要加強訓練,屬于中檔題.23、(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由見解析【解析】
(1)根據(jù)折線統(tǒng)計圖數(shù)字進行填表即可;(2)根據(jù)稽查,中位數(shù),眾數(shù)的計算方法,求得甲成績的極差,中位數(shù),乙成績的極差,眾數(shù)即可;(3)可分別從平均數(shù)、方差、極差三方面進行比較.【詳解】(1)由圖可知:甲的成績?yōu)椋?5,84,89,82,86,1,86,83,85,86,∴70
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- SYB創(chuàng)業(yè)培訓游戲模塊1課程設計
- 鍋爐更換工程合同協(xié)議書
- 商業(yè)綜合體研究預測報告-商業(yè)綜合體項目可行性研究咨詢預測報告2025
- 傳統(tǒng)零售業(yè)創(chuàng)新升級的戰(zhàn)略與實施路徑
- 詩歌文化節(jié)策劃書
- 湘西定制化木質家具項目商業(yè)計劃書
- 合作代建合同協(xié)議書范本
- 2025年梅酒項目深度研究分析報告
- 房屋空調安裝合同協(xié)議書
- 中國煤化工輕油項目創(chuàng)業(yè)計劃書
- 婚介所個人資料登記表格
- 整形醫(yī)院雙眼皮培訓課件
- Meta分析很全的課件
- 電商倉庫流程及診斷
- 施工場地平整施工方案
- 靜脈治療課件
- NPUAP壓瘡指南更新的解讀
- 2020年華為采購物料環(huán)保規(guī)范?V4
- IPQC制程檢驗流程圖
- 進料檢驗報告單
- 2022年江蘇省南京市中考歷史試題(含答案)
評論
0/150
提交評論