廣西南寧市江南區(qū)維羅中學(xué)2022年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第1頁
廣西南寧市江南區(qū)維羅中學(xué)2022年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第2頁
廣西南寧市江南區(qū)維羅中學(xué)2022年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第3頁
廣西南寧市江南區(qū)維羅中學(xué)2022年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第4頁
廣西南寧市江南區(qū)維羅中學(xué)2022年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣西南寧市江南區(qū)維羅中學(xué)2022年中考數(shù)學(xué)對(duì)點(diǎn)突破模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.拋物線y=3(x﹣2)2+5的頂點(diǎn)坐標(biāo)是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)2.在反比例函數(shù)的圖象的每一個(gè)分支上,y都隨x的增大而減小,則k的取值范圍是()A.k>1 B.k>0 C.k≥1 D.k<13.已知下列命題:①對(duì)頂角相等;②若a>b>0,則<;③對(duì)角線相等且互相垂直的四邊形是正方形;④拋物線y=x2﹣2x與坐標(biāo)軸有3個(gè)不同交點(diǎn);⑤邊長(zhǎng)相等的多邊形內(nèi)角都相等.從中任選一個(gè)命題是真命題的概率為()A. B. C. D.4.如圖,點(diǎn)P是菱形ABCD的對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P垂直于AC的直線交菱形ABCD的邊于M、N兩點(diǎn).設(shè)AC=2,BD=1,AP=x,△AMN的面積為y,則y關(guān)于x的函數(shù)圖象大致形狀是()A. B. C. D.5.如圖,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足為D、E,F(xiàn)分別是CD,AD上的點(diǎn),且CE=AF.如果∠AED=62°,那么∠DBF的度數(shù)為()A.62° B.38° C.28° D.26°6.如圖,把一塊直角三角板的直角頂點(diǎn)放在直尺的一邊上,若∠1=50°,則∠2的度數(shù)為().A.50° B.40° C.30° D.25°7.若x>y,則下列式子錯(cuò)誤的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.8.已知:如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE,過點(diǎn)A作AE的垂線交DE于點(diǎn)P,若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點(diǎn)B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號(hào)是()A.①③④ B.①②⑤ C.③④⑤ D.①③⑤9.如圖,點(diǎn)F是ABCD的邊AD上的三等分點(diǎn),BF交AC于點(diǎn)E,如果△AEF的面積為2,那么四邊形CDFE的面積等于()A.18 B.22 C.24 D.4610.下列因式分解正確的是()A.x2+9=(x+3)2 B.a(chǎn)2+2a+4=(a+2)2C.a(chǎn)3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x)11.如圖,AB∥CD,∠ABK的角平分線BE的反向延長(zhǎng)線和∠DCK的角平分線CF的反向延長(zhǎng)線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=()A.76° B.78° C.80° D.82°12.如圖,在等腰直角三角形ABC中,∠C=90°,D為BC的中點(diǎn),將△ABC折疊,使點(diǎn)A與點(diǎn)D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖1,AB是半圓O的直徑,正方形OPNM的對(duì)角線ON與AB垂直且相等,Q是OP的中點(diǎn).一只機(jī)器甲蟲從點(diǎn)A出發(fā)勻速爬行,它先沿直徑爬到點(diǎn)B,再沿半圓爬回到點(diǎn)A,一臺(tái)微型記錄儀記錄了甲蟲的爬行過程.設(shè)甲蟲爬行的時(shí)間為t,甲蟲與微型記錄儀之間的距離為y,表示y與t的函數(shù)關(guān)系的圖象如圖2所示,那么微型記錄儀可能位于圖1中的()A.點(diǎn)MB.點(diǎn)NC.點(diǎn)PD.點(diǎn)Q14.如圖,將一個(gè)正三角形紙片剪成四個(gè)全等的小正三角形,再將其中的一個(gè)按同樣的方法剪成四個(gè)更小的正三角形,……如此繼續(xù)下去,結(jié)果如下表:則an=__________(用含n的代數(shù)式表示).所剪次數(shù)1234…n正三角形個(gè)數(shù)471013…an15.因式分解:x2﹣10x+24=_____.16.如圖,菱形OABC的一邊OA在x軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),tan∠AOC=,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C,與AB交于點(diǎn)D,若△COD的面積為20,則k的值等于_____________.17.如圖,在△PAB中,PA=PB,M、N、K分別是PA,PB,AB上的點(diǎn),且AM=BK,BN=AK.若∠MKN=40°,則∠P的度數(shù)為___18.如圖,ΔABC中,∠ACB=90°,∠ABC=25°,以點(diǎn)C為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)后得到ΔA′B′C′,且點(diǎn)A在A′B′上,則旋轉(zhuǎn)角為________________°.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)已知AC,EC分別是四邊形ABCD和EFCG的對(duì)角線,直線AE與直線BF交于點(diǎn)H(1)觀察猜想如圖1,當(dāng)四邊形ABCD和EFCG均為正方形時(shí),線段AE和BF的數(shù)量關(guān)系是;∠AHB=.(2)探究證明如圖2,當(dāng)四邊形ABCD和FFCG均為矩形,且∠ACB=∠ECF=30°時(shí),(1)中的結(jié)論是否仍然成立,并說明理由.(3)拓展延伸在(2)的條件下,若BC=9,F(xiàn)C=6,將矩形EFCG繞點(diǎn)C旋轉(zhuǎn),在整個(gè)旋轉(zhuǎn)過程中,當(dāng)A、E、F三點(diǎn)共線時(shí),請(qǐng)直接寫出點(diǎn)B到直線AE的距離.20.(6分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進(jìn)行下列操作:若任意抽取其中一張卡片,抽到的卡片既是中心對(duì)稱圖形又是軸對(duì)稱圖形的概率是;若任意抽出一張不放回,然后再?gòu)挠嘞碌某槌鲆粡垼?qǐng)用樹狀圖或列表表示摸出的兩張卡片所有可能的結(jié)果,求抽出的兩張卡片的圖形是中心對(duì)稱圖形的概率.21.(6分)如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD,等邊△ABE,已知∠BAC=30°,EF⊥AB,垂足為F,連接DF試說明AC=EF;求證:四邊形ADFE是平行四邊形.22.(8分)如圖,已知∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE與BD相交于點(diǎn)O.求證:EC=ED.23.(8分)觀察下列多面體,并把下表補(bǔ)充完整.名稱三棱柱四棱柱五棱柱六棱柱圖形頂點(diǎn)數(shù)61012棱數(shù)912面數(shù)58觀察上表中的結(jié)果,你能發(fā)現(xiàn)、、之間有什么關(guān)系嗎?請(qǐng)寫出關(guān)系式.24.(10分)如圖,把△EFP按圖示方式放置在菱形ABCD中,使得頂點(diǎn)E、F、P分別在線段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大??;(2)若AP=6,求AE+AF的值.25.(10分)4×100米拉力賽是學(xué)校運(yùn)動(dòng)會(huì)最精彩的項(xiàng)目之一.圖中的實(shí)線和虛線分別是初三?一班和初三?二班代表隊(duì)在比賽時(shí)運(yùn)動(dòng)員所跑的路程y(米)與所用時(shí)間x(秒)的函數(shù)圖象(假設(shè)每名運(yùn)動(dòng)員跑步速度不變,交接棒時(shí)間忽略不計(jì)).問題:(1)初三?二班跑得最快的是第接力棒的運(yùn)動(dòng)員;(2)發(fā)令后經(jīng)過多長(zhǎng)時(shí)間兩班運(yùn)動(dòng)員第一次并列?26.(12分)桌面上放有4張卡片,正面分別標(biāo)有數(shù)字1,2,3,4,這些卡片除數(shù)字外完全相同.把這些卡片反面朝上洗勻后放在桌面上,甲從中任意抽出一張,記下卡片上的數(shù)字后仍放反面朝上放回洗勻,乙從中任意抽出一張,記下卡片上的數(shù)字,然后將這兩數(shù)相加.(1)請(qǐng)用列表或畫樹狀圖的方法求兩數(shù)和為5的概率;(2)若甲與乙按上述方式做游戲,當(dāng)兩數(shù)之和為5時(shí),甲勝;反之則乙勝;若甲勝一次得12分,那么乙勝一次得多少分,才能使這個(gè)游戲?qū)﹄p方公平?27.(12分)為了進(jìn)一步改善環(huán)境,鄭州市今年增加了綠色自行車的數(shù)量,已知A型號(hào)的自行車比B型號(hào)的自行車的單價(jià)低30元,買8輛A型號(hào)的自行車與買7輛B型號(hào)的自行車所花費(fèi)用相同.

(1)A,B兩種型號(hào)的自行車的單價(jià)分別是多少?

(2)若購(gòu)買A,B兩種自行車共600輛,且A型號(hào)自行車的數(shù)量不多于B型號(hào)自行車的一半,請(qǐng)你給出一種最省錢的方案,并求出該方案所需要的費(fèi)用.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】

根據(jù)二次函數(shù)的性質(zhì)y=a(x﹣h)2+k的頂點(diǎn)坐標(biāo)是(h,k)進(jìn)行求解即可.【詳解】∵拋物線解析式為y=3(x-2)2+5,∴二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是(2,5),故選C.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),根據(jù)拋物線的頂點(diǎn)式,可確定拋物線的開口方向,頂點(diǎn)坐標(biāo)(對(duì)稱軸),最大(最小)值,增減性等.2、A【解析】

根據(jù)反比例函數(shù)的性質(zhì),當(dāng)反比例函數(shù)的系數(shù)大于0時(shí),在每一支曲線上,y都隨x的增大而減小,可得k﹣1>0,解可得k的取值范圍.【詳解】解:根據(jù)題意,在反比例函數(shù)圖象的每一支曲線上,y都隨x的增大而減小,即可得k﹣1>0,解得k>1.故選A.【點(diǎn)評(píng)】本題考查了反比例函數(shù)的性質(zhì):①當(dāng)k>0時(shí),圖象分別位于第一、三象限;當(dāng)k<0時(shí),圖象分別位于第二、四象限.②當(dāng)k>0時(shí),在同一個(gè)象限內(nèi),y隨x的增大而減小;當(dāng)k<0時(shí),在同一個(gè)象限,y隨x的增大而增大.3、B【解析】∵①對(duì)頂角相等,故此選項(xiàng)正確;②若a>b>0,則<,故此選項(xiàng)正確;③對(duì)角線相等且互相垂直平分的四邊形是正方形,故此選項(xiàng)錯(cuò)誤;④拋物線y=x2﹣2x與坐標(biāo)軸有2個(gè)不同交點(diǎn),故此選項(xiàng)錯(cuò)誤;⑤邊長(zhǎng)相等的多邊形內(nèi)角不一定都相等,故此選項(xiàng)錯(cuò)誤;∴從中任選一個(gè)命題是真命題的概率為:.故選:B.4、C【解析】△AMN的面積=AP×MN,通過題干已知條件,用x分別表示出AP、MN,根據(jù)所得的函數(shù),利用其圖象,可分兩種情況解答:(1)0<x≤1;(2)1<x<2;解:(1)當(dāng)0<x≤1時(shí),如圖,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵M(jìn)N⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函數(shù)圖象開口向上;(2)當(dāng)1<x<2,如圖,同理證得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函數(shù)圖象開口向下;綜上答案C的圖象大致符合.故選C.本題考查了二次函數(shù)的圖象,考查了學(xué)生從圖象中讀取信息的數(shù)形結(jié)合能力,體現(xiàn)了分類討論的思想.5、C【解析】分析:主要考查:等腰三角形的三線合一,直角三角形的性質(zhì).注意:根據(jù)斜邊和直角邊對(duì)應(yīng)相等可以證明△BDF≌△ADE.詳解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故選C.點(diǎn)睛:熟練運(yùn)用等腰直角三角形三線合一性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半是解答本題的關(guān)鍵.6、B【解析】

解:如圖,由兩直線平行,同位角相等,可求得∠3=∠1=50°,根據(jù)平角為180°可得,∠2=90°﹣50°=40°.故選B.【點(diǎn)睛】本題考查平行線的性質(zhì),掌握兩直線平行,同位角相等是解題關(guān)鍵.7、B【解析】根據(jù)不等式的性質(zhì)在不等式兩邊加(或減)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變;不等式兩邊乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變;不等式兩邊乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變即可得出答案:A、不等式兩邊都減3,不等號(hào)的方向不變,正確;B、乘以一個(gè)負(fù)數(shù),不等號(hào)的方向改變,錯(cuò)誤;C、不等式兩邊都加3,不等號(hào)的方向不變,正確;D、不等式兩邊都除以一個(gè)正數(shù),不等號(hào)的方向不變,正確.故選B.8、D【解析】

①首先利用已知條件根據(jù)邊角邊可以證明△APD≌△AEB;

②由①可得∠BEP=90°,故BE不垂直于AE過點(diǎn)B作BF⊥AE延長(zhǎng)線于F,由①得∠AEB=135°所以∠EFB=45°,所以△EFB是等腰Rt△,故B到直線AE距離為BF=,故②是錯(cuò)誤的;

③利用全等三角形的性質(zhì)和對(duì)頂角相等即可判定③說法正確;

④由△APD≌△AEB,可知S△APD+S△APB=S△AEB+S△APB,然后利用已知條件計(jì)算即可判定;

⑤連接BD,根據(jù)三角形的面積公式得到S△BPD=PD×BE=,所以S△ABD=S△APD+S△APB+S△BPD=2+,由此即可判定.【詳解】由邊角邊定理易知△APD≌△AEB,故①正確;

由△APD≌△AEB得,∠AEP=∠APE=45°,從而∠APD=∠AEB=135°,

所以∠BEP=90°,

過B作BF⊥AE,交AE的延長(zhǎng)線于F,則BF的長(zhǎng)是點(diǎn)B到直線AE的距離,

在△AEP中,由勾股定理得PE=,

在△BEP中,PB=,PE=,由勾股定理得:BE=,

∵∠PAE=∠PEB=∠EFB=90°,AE=AP,

∴∠AEP=45°,

∴∠BEF=180°-45°-90°=45°,

∴∠EBF=45°,

∴EF=BF,

在△EFB中,由勾股定理得:EF=BF=,

故②是錯(cuò)誤的;

因?yàn)椤鰽PD≌△AEB,所以∠ADP=∠ABE,而對(duì)頂角相等,所以③是正確的;

由△APD≌△AEB,

∴PD=BE=,

可知S△APD+S△APB=S△AEB+S△APB=S△AEP+S△BEP=+,因此④是錯(cuò)誤的;

連接BD,則S△BPD=PD×BE=,

所以S△ABD=S△APD+S△APB+S△BPD=2+,

所以S正方形ABCD=2S△ABD=4+.

綜上可知,正確的有①③⑤.故選D.【點(diǎn)睛】考查了正方形的性質(zhì)、全等三角形的性質(zhì)與判定、三角形的面積及勾股定理,綜合性比較強(qiáng),解題時(shí)要求熟練掌握相關(guān)的基礎(chǔ)知識(shí)才能很好解決問題.9、B【解析】

連接FC,先證明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根據(jù)點(diǎn)F是□ABCD的邊AD上的三等分點(diǎn)得出S△FCD=2S△AFC,四邊形CDFE的面積=S△FCD+S△EFC,再代入△AEF的面積為2即可求出四邊形CDFE的面積.【詳解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴==,∵△AEF與△EFC高相等,∴S△EFC=3S△AEF,∵點(diǎn)F是□ABCD的邊AD上的三等分點(diǎn),∴S△FCD=2S△AFC,∵△AEF的面積為2,∴四邊形CDFE的面積=S△FCD+S△EFC=16+6=22.故選B.【點(diǎn)睛】本題考查了相似三角形的應(yīng)用與三角形的面積,解題的關(guān)鍵是熟練的掌握相似三角形的應(yīng)用與三角形的面積的相關(guān)知識(shí)點(diǎn).10、C【解析】

試題分析:A、B無法進(jìn)行因式分解;C正確;D、原式=(1+2x)(1-2x)故選C,考點(diǎn):因式分解【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?1、B【解析】如圖,分別過K、H作AB的平行線MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故選B.12、A【解析】∵△DEF是△AEF翻折而成,

∴△DEF≌△AEF,∠A=∠EDF,

∵△ABC是等腰直角三角形,

∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,

∴∠BED=∠CDF,

設(shè)CD=1,CF=x,則CA=CB=2,

∴DF=FA=2-x,

∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,

解得x=,

∴sin∠BED=sin∠CDF=.

故選:A.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、D【解析】D.試題分析:應(yīng)用排他法分析求解:若微型記錄儀位于圖1中的點(diǎn)M,AM最小,與圖2不符,可排除A.若微型記錄儀位于圖1中的點(diǎn)N,由于AN=BM,即甲蟲從A到B時(shí)是對(duì)稱的,與圖2不符,可排除B.若微型記錄儀位于圖1中的點(diǎn)P,由于甲蟲從A到OP與圓弧的交點(diǎn)時(shí)甲蟲與微型記錄儀之間的距離y逐漸減?。患紫x從OP與圓弧的交點(diǎn)到A時(shí)甲蟲與微型記錄儀之間的距離y逐漸增大,即y與t的函數(shù)關(guān)系的圖象只有兩個(gè)趨勢(shì),與圖2不符,可排除C.故選D.考點(diǎn):1.動(dòng)點(diǎn)問題的函數(shù)圖象分析;2.排他法的應(yīng)用.14、3n+1.【解析】試題分析:從表格中的數(shù)據(jù),不難發(fā)現(xiàn):多剪一次,多3個(gè)三角形.即剪n次時(shí),共有4+3(n-1)=3n+1.試題解析:故剪n次時(shí),共有4+3(n-1)=3n+1.考點(diǎn):規(guī)律型:圖形的變化類.15、(x﹣4)(x﹣6)【解析】

因?yàn)?-4)×(-6)=24,(-4)+(-6)=-10,所以利用十字相乘法分解因式即可.【詳解】x2﹣10x+24=x2﹣10x+(-4)×(-6)=(x﹣4)(x﹣6)【點(diǎn)睛】本題考查的是因式分解,熟練掌握因式分解的方法是解題的關(guān)鍵.16、﹣24【解析】分析:如下圖,過點(diǎn)C作CF⊥AO于點(diǎn)F,過點(diǎn)D作DE∥OA交CO于點(diǎn)E,設(shè)CF=4x,由tan∠AOC=可得OF=3x,由此可得OC=5x,從而可得OA=5x,由已知條件易證S菱形ABCO=2S△COD=40=OA·CF=20x2,從而可得x=,由此可得點(diǎn)C的坐標(biāo)為,這樣由點(diǎn)C在反比例函數(shù)的圖象上即可得到k=-24.詳解:如下圖,過點(diǎn)C作CF⊥AO于點(diǎn)F,過點(diǎn)D作DE∥OA交CO于點(diǎn)E,設(shè)CF=4x,∵四邊形ABCO是菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴四邊形AOED和四邊形DECB都是平行四邊形,∴S△AOD=S△DOE,S△BCD=S△CDE,∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,∵tan∠AOC=,CF=4x,∴OF=3x,∴在Rt△COF中,由勾股定理可得OC=5x,∴OA==OC=5x,∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,∴OF=,CF=,∴點(diǎn)C的坐標(biāo)為,∵點(diǎn)C在反比例函數(shù)的圖象上,∴k=.故答案為:-24.點(diǎn)睛:本題的解題要點(diǎn)有兩點(diǎn):(1)作出如圖所示的輔助線,設(shè)CF=4x,結(jié)合已知條件把OF和OA用含x的式子表達(dá)出來;(2)由四邊形AOCB是菱形,點(diǎn)D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.17、100°【解析】

由條件可證明△AMK≌△BKN,再結(jié)合外角的性質(zhì)可求得∠A=∠MKN,再利用三角形內(nèi)角和可求得∠P.【詳解】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN(SAS),∴∠AMK=∠BKN,∵∠A+∠AMK=∠MKN+∠BKN,∴∠A=∠MKN=40°,∴∠P=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°,故答案為100°【點(diǎn)睛】本題主要考查全等三角形的判定和性質(zhì)及三角形內(nèi)角和定理,利用條件證得△AMK≌△BKN是解題的關(guān)鍵.18、50度【解析】

由將△ACB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△A′B′C′,即可得△ACB≌△A′B′C′,則可得∠A'=∠BAC,△AA'C是等腰三角形,又由△ACB中,∠ACB=90°,∠ABC=25°,即可求得∠A'、∠B'AB的度數(shù),即可求得∠ACB'的度數(shù),繼而求得∠B'CB的度數(shù).【詳解】∵將△ACB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到,∴△ACB≌,∴∠A′=∠BAC,AC=CA′,∴∠BAC=∠CAA′,∵△ACB中,∠ACB=90°,∠ABC=25°,∴∠BAC=90°?∠ABC=65°,∴∠BAC=∠CAA′=65°,∴∠B′AB=180°?65°?65°=50°,∴∠ACB′=180°?25°?50°?65°=40°,∴∠B′CB=90°?40°=50°.故答案為50.【點(diǎn)睛】此題考查了旋轉(zhuǎn)的性質(zhì)、直角三角形的性質(zhì)以及等腰三角形的性質(zhì).此題難度不大,注意掌握旋轉(zhuǎn)前后圖形的對(duì)應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1),45°;(2)不成立,理由見解析;(3).【解析】

(1)由正方形的性質(zhì),可得,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性質(zhì)得到,∠CAB==45°,又因?yàn)椤螩BA=90°,所以∠AHB=45°.(2)由矩形的性質(zhì),及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性質(zhì)可得∠CAE=∠CBF,,則∠CAB=60°,又因?yàn)椤螩BA=90°,求得∠AHB=30°,故不成立.(3)分兩種情況討論:①作BM⊥AE于M,因?yàn)锳、E、F三點(diǎn)共線,及∠AFB=30°,∠AFC=90°,進(jìn)而求得AC和EF,根據(jù)勾股定理求得AF,則AE=AF﹣EF,再由(2)得:,所以BF=3﹣3,故BM=.②如圖3所示:作BM⊥AE于M,由A、E、F三點(diǎn)共線,得:AE=6+2,BF=3+3,則BM=.【詳解】解:(1)如圖1所示:∵四邊形ABCD和EFCG均為正方形,∴,∠ACB=∠GEC=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣45°=45°,故答案為,45°;(2)不成立;理由如下:∵四邊形ABCD和EFCG均為矩形,且∠ACB=∠ECF=30°,∴,∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,,∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣60°=30°;(3)分兩種情況:①如圖2所示:作BM⊥AE于M,當(dāng)A、E、F三點(diǎn)共線時(shí),由(2)得:∠AFB=30°,∠AFC=90°,在Rt△ABC和Rt△CEF中,∵∠ACB=∠ECF=30°,∴AC=,EF=CF×tan30°=6×=2,在Rt△ACF中,AF=,∴AE=AF﹣EF=6﹣2,由(2)得:,∴BF=(6﹣2)=3﹣3,在△BFM中,∵∠AFB=30°,∴BM=BF=;②如圖3所示:作BM⊥AE于M,當(dāng)A、E、F三點(diǎn)共線時(shí),同(2)得:AE=6+2,BF=3+3,則BM=BF=;綜上所述,當(dāng)A、E、F三點(diǎn)共線時(shí),點(diǎn)B到直線AE的距離為.【點(diǎn)睛】本題考察正方形的性質(zhì)和矩形的性質(zhì)以及三點(diǎn)共線,熟練掌握正方形的性質(zhì)和矩形的性質(zhì),知道分類討論三點(diǎn)共線問題是解題的關(guān)鍵.本題屬于中等偏難.20、(1);(2).【解析】

(1)既是中心對(duì)稱圖形又是軸對(duì)稱圖形只有圓一個(gè)圖形,然后根據(jù)概率的意義解答即可;(2)畫出樹狀圖,然后根據(jù)概率公式列式計(jì)算即可得解.【詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對(duì)稱圖形又是軸對(duì)稱圖形,∴抽到的卡片既是中心對(duì)稱圖形又是軸對(duì)稱圖形的概率是;(2)根據(jù)題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形是中心對(duì)稱圖形的是B、C共有2種情況,所以,P(抽出的兩張卡片的圖形是中心對(duì)稱圖形).【點(diǎn)睛】本題考查了列表法和樹狀圖法,用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.21、證明見解析.【解析】

(1)一方面Rt△ABC中,由∠BAC=30°可以得到AB=2BC,另一方面△ABE是等邊三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,從而可證明△AFE≌△BCA,再根據(jù)全等三角形的性質(zhì)即可證明AC=EF.(2)根據(jù)(1)知道EF=AC,而△ACD是等邊三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根據(jù)平行四邊形的判定定理即可證明四邊形ADFE是平行四邊形.【詳解】證明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC.又∵△ABE是等邊三角形,EF⊥AB,∴AB=2AF.∴AF=BC.∵在Rt△AFE和Rt△BCA中,AF=BC,AE=BA,∴△AFE≌△BCA(HL).∴AC=EF.(2)∵△ACD是等邊三角形,∴∠DAC=60°,AC=AD.∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.∵AC=EF,AC=AD,∴EF=AD.∴四邊形ADFE是平行四邊形.考點(diǎn):1.全等三角形的判定與性質(zhì);2.等邊三角形的性質(zhì);3.平行四邊形的判定.22、見解析【解析】

由∠1=∠2,可得∠BED=∠AEC,根據(jù)利用ASA可判定△BED≌△AEC,然后根據(jù)全等三角形的性質(zhì)即可得證.【詳解】解:∵∠1=∠2,∴∠1+∠AED=∠2+∠AED,即∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC(ASA),∴ED=EC.【點(diǎn)睛】本題主要考查全等三角形的判定和性質(zhì),掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性質(zhì)(即全等三角形的對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等)是解題的關(guān)鍵.23、8,15,18,6,7;【解析】分析:結(jié)合三棱柱、四棱柱和五棱柱的特點(diǎn),即可填表,根據(jù)已知的面、頂點(diǎn)和棱與n棱柱的關(guān)系,可知n棱柱一定有(n+1)個(gè)面,1n個(gè)頂點(diǎn)和3n條棱,進(jìn)而得出答案,利用前面的規(guī)律得出a,b,c之間的關(guān)系.詳解:填表如下:名稱三棱柱四棱柱五棱柱六棱柱圖形頂點(diǎn)數(shù)a681011棱數(shù)b9111518面數(shù)c5678根據(jù)上表中的規(guī)律判斷,若一個(gè)棱柱的底面多邊形的邊數(shù)為n,則它有n個(gè)側(cè)面,共有n+1個(gè)面,共有1n個(gè)頂點(diǎn),共有3n條棱;故a,b,c之間的關(guān)系:a+c-b=1.點(diǎn)睛:此題通過研究幾個(gè)棱柱中頂點(diǎn)數(shù)、棱數(shù)、面數(shù)的關(guān)系探索出n棱柱中頂點(diǎn)數(shù)、棱數(shù)、面數(shù)之間的關(guān)系(即歐拉公式),掌握常見棱柱的特征,可以總結(jié)一般規(guī)律:n棱柱有(n+1)個(gè)面,1n個(gè)頂點(diǎn)和3n條棱是解題關(guān)鍵.24、(1)∠EPF=120°;(2)AE+AF=6.【解析】試題分析:(1)過點(diǎn)P作PG⊥EF于G,解直角三角形即可得到結(jié)論;

(2)如圖2,過點(diǎn)P作PM⊥AB于M,PN⊥AD于N,證明△ABC≌△ADC,Rt△PME≌Rt△PNF,問題即可得證.試題解析:(1)如圖1,過點(diǎn)P作PG⊥EF于G,

∵PE=PF,

∴FG=EG=EF=2,∠FPG=∠EPG=∠EPF,

在△FPG中,sin∠FPG=,

∴∠FPG=60°,

∴∠EPF=2∠FPG=120°;

(2)如圖2,過點(diǎn)P作PM⊥AB于M,PN⊥AD于N,

∵四邊形ABCD是菱形,

∴AD=AB,DC=BC,

∴∠DAC=∠BAC,

∴PM=PN,

在Rt△PME于Rt△PNF中,,

∴Rt△PME≌Rt△PNF,

∴FN=EM,在Rt△PMA中,∠P

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論