




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆陜西省西安市陜師大附中畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.如圖是本地區(qū)一種產(chǎn)品30天的銷售圖象,圖①是產(chǎn)品日銷售量y(單位:件)與時(shí)間t(單位;天)的函數(shù)關(guān)系,圖②是一件產(chǎn)品的銷售利潤(rùn)z(單位:元)與時(shí)間t(單位:天)的函數(shù)關(guān)系,已知日銷售利潤(rùn)=日銷售量×一件產(chǎn)品的銷售利潤(rùn),下列結(jié)論錯(cuò)誤的是()A.第24天的銷售量為200件 B.第10天銷售一件產(chǎn)品的利潤(rùn)是15元C.第12天與第30天這兩天的日銷售利潤(rùn)相等 D.第27天的日銷售利潤(rùn)是875元2.一、單選題如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1253.如圖,與∠1是內(nèi)錯(cuò)角的是()A.∠2B.∠3C.∠4D.∠54.如圖,O為直線AB上一點(diǎn),OE平分∠BOC,OD⊥OE于點(diǎn)O,若∠BOC=80°,則∠AOD的度數(shù)是()A.70° B.50° C.40° D.35°5.下列圖形中,既是軸對(duì)稱圖形又是中心對(duì)稱圖形的有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)6.中國(guó)古代在利用“計(jì)里畫方”(比例縮放和直角坐標(biāo)網(wǎng)格體系)的方法制作地圖時(shí),會(huì)利用測(cè)桿、水準(zhǔn)儀和照板來(lái)測(cè)量距離.在如圖所示的測(cè)量距離AB的示意圖中,記照板“內(nèi)芯”的高度為EF,觀測(cè)者的眼睛(圖中用點(diǎn)C表示)與BF在同一水平線上,則下列結(jié)論中,正確的是()A. B. C. D.7.如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,則下列結(jié)論,①c<0,②2a+b=0;③a+b+c=0,④b2–4ac<0,其中正確的有()A.1個(gè) B.2個(gè) C.3個(gè) D.48.如圖,四邊形ABCD內(nèi)接于⊙O,AD∥BC,BD平分∠ABC,∠A=130°,則∠BDC的度數(shù)為()A.100° B.105° C.110° D.115°9.如圖,兩個(gè)同心圓(圓心相同半徑不同的圓)的半徑分別為6cm和3cm,大圓的弦AB與小圓相切,則劣弧AB的長(zhǎng)為()A.2πcm B.4πcm C.6πcm D.8πcm10.如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊AB、AD上.則sin∠AFG的值為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.已知,那么__.12.如圖,點(diǎn)A,B在反比例函數(shù)(k>0)的圖象上,AC⊥x軸,BD⊥x軸,垂足C,D分別在x軸的正、負(fù)半軸上,CD=k,已知AB=2AC,E是AB的中點(diǎn),且△BCE的面積是△ADE的面積的2倍,則k的值是______.13.如圖,在矩形ABCD中,對(duì)角線BD的長(zhǎng)為1,點(diǎn)P是線段BD上的一點(diǎn),聯(lián)結(jié)CP,將△BCP沿著直線CP翻折,若點(diǎn)B落在邊AD上的點(diǎn)E處,且EP//AB,則AB的長(zhǎng)等于________.14.計(jì)算:=_____.15.從5張上面分別寫著“加”“油”“向”“未”“來(lái)”這5個(gè)字的卡片(大小、形狀完全相同)中隨機(jī)抽取一張,則這張卡片上面恰好寫著“加”字的概率是__________.16.在平面直角坐標(biāo)系中,拋物線y=x2+x+2上有一動(dòng)點(diǎn)P,直線y=﹣x﹣2上有一動(dòng)線段AB,當(dāng)P點(diǎn)坐標(biāo)為_____時(shí),△PAB的面積最?。?7.如圖,在正六邊形ABCDEF中,AC于FB相交于點(diǎn)G,則值為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,∠BAC的平分線交△ABC的外接圓于點(diǎn)D,交BC于點(diǎn)F,∠ABC的平分線交AD于點(diǎn)E.(1)求證:DE=DB:(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑;(3)若BD=6,DF=4,求AD的長(zhǎng)19.(5分)如圖,△ABC內(nèi)接于⊙O,CD是⊙O的直徑,AB與CD交于點(diǎn)E,點(diǎn)P是CD延長(zhǎng)線上的一點(diǎn),AP=AC,且∠B=2∠P.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑;(3)在(2)的條件下,若點(diǎn)B等分半圓CD,求DE的長(zhǎng).20.(8分)如圖1,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx﹣與x軸交于點(diǎn)A(1,0)和點(diǎn)B(﹣3,0).繞點(diǎn)A旋轉(zhuǎn)的直線l:y=kx+b1交拋物線于另一點(diǎn)D,交y軸于點(diǎn)C.(1)求拋物線的函數(shù)表達(dá)式;(2)當(dāng)點(diǎn)D在第二象限且滿足CD=5AC時(shí),求直線l的解析式;(3)在(2)的條件下,點(diǎn)E為直線l下方拋物線上的一點(diǎn),直接寫出△ACE面積的最大值;(4)如圖2,在拋物線的對(duì)稱軸上有一點(diǎn)P,其縱坐標(biāo)為4,點(diǎn)Q在拋物線上,當(dāng)直線l與y軸的交點(diǎn)C位于y軸負(fù)半軸時(shí),是否存在以點(diǎn)A,D,P,Q為頂點(diǎn)的平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)D的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.21.(10分)如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).請(qǐng)畫出△ABC向左平移5個(gè)單位長(zhǎng)度后得到的△ABC;請(qǐng)畫出△ABC關(guān)于原點(diǎn)對(duì)稱的△ABC;在軸上求作一點(diǎn)P,使△PAB的周長(zhǎng)最小,請(qǐng)畫出△PAB,并直接寫出P的坐標(biāo).22.(10分)如圖,一次函數(shù)y1=kx+b(k≠0)和反比例函數(shù)y2=(m≠0)的圖象交于點(diǎn)A(-1,6),B(a,-2).求一次函數(shù)與反比例函數(shù)的解析式;根據(jù)圖象直接寫出y1>y2時(shí),x的取值范圍.23.(12分)計(jì)算:|﹣2|+2cos30°﹣(﹣)2+(tan45°)﹣124.(14分)如圖,已知△ABC中,AB=AC=5,cosA=.求底邊BC的長(zhǎng).
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、C【解析】試題解析:A、根據(jù)圖①可得第24天的銷售量為200件,故正確;B、設(shè)當(dāng)0≤t≤20,一件產(chǎn)品的銷售利潤(rùn)z(單位:元)與時(shí)間t(單位:天)的函數(shù)關(guān)系為z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=-x+25,當(dāng)x=10時(shí),y=-10+25=15,故正確;C、當(dāng)0≤t≤24時(shí),設(shè)產(chǎn)品日銷售量y(單位:件)與時(shí)間t(單位;天)的函數(shù)關(guān)系為y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=t+100,當(dāng)t=12時(shí),y=150,z=-12+25=13,∴第12天的日銷售利潤(rùn)為;150×13=1950(元),第30天的日銷售利潤(rùn)為;150×5=750(元),750≠1950,故C錯(cuò)誤;D、第30天的日銷售利潤(rùn)為;150×5=750(元),故正確.故選C2、B【解析】
根據(jù)角平分線的定義推出△ECF為直角三角形,然后根據(jù)勾股定理即可求得CE2+CF2=EF2,進(jìn)而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故選:B.【點(diǎn)睛】本題考查角平分線的定義(從一個(gè)角的頂點(diǎn)引出一條射線,把這個(gè)角分成兩個(gè)完全相同的角,這條射線叫做這個(gè)角的角平分線),直角三角形的判定(有一個(gè)角為90°的三角形是直角三角形)以及勾股定理的運(yùn)用,解題的關(guān)鍵是首先證明出△ECF為直角三角形.3、B【解析】由內(nèi)錯(cuò)角定義選B.4、B【解析】分析:由OE是∠BOC的平分線得∠COE=40°,由OD⊥OE得∠DOC=50°,從而可求出∠AOD的度數(shù).詳解:∵OE是∠BOC的平分線,∠BOC=80°,∴∠COE=∠BOC=×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故選B.點(diǎn)睛:本題考查了角平分線的定義:從一個(gè)角的頂點(diǎn)出發(fā),把這個(gè)角分成相等的兩個(gè)角的射線叫做這個(gè)角的平分線.性質(zhì):若OC是∠AOB的平分線則∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.5、B【解析】解:第一個(gè)圖是軸對(duì)稱圖形,又是中心對(duì)稱圖形;第二個(gè)圖是軸對(duì)稱圖形,不是中心對(duì)稱圖形;第三個(gè)圖是軸對(duì)稱圖形,又是中心對(duì)稱圖形;第四個(gè)圖是軸對(duì)稱圖形,不是中心對(duì)稱圖形;既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的有2個(gè).故選B.6、B【解析】分析:由平行得出相似,由相似得出比例,即可作出判斷.詳解:∵EF∥AB,∴△CEF∽△CAB,∴,故選B.點(diǎn)睛:本題考查了相似三角形的應(yīng)用,熟練掌握相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.7、B【解析】
由拋物線的開口方向判斷a與1的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c與1的關(guān)系,然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.【詳解】①拋物線與y軸交于負(fù)半軸,則c<1,故①正確;②對(duì)稱軸x1,則2a+b=1.故②正確;③由圖可知:當(dāng)x=1時(shí),y=a+b+c<1.故③錯(cuò)誤;④由圖可知:拋物線與x軸有兩個(gè)不同的交點(diǎn),則b2﹣4ac>1.故④錯(cuò)誤.綜上所述:正確的結(jié)論有2個(gè).故選B.【點(diǎn)睛】本題考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,會(huì)利用對(duì)稱軸的值求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運(yùn)用.8、B【解析】
根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù),進(jìn)而利用平行線的性質(zhì)得出∠ABC的度數(shù),利用角平分線的定義和三角形內(nèi)角和解答即可.【詳解】∵四邊形ABCD內(nèi)接于⊙O,∠A=130°,
∴∠C=180°-130°=50°,
∵AD∥BC,
∴∠ABC=180°-∠A=50°,
∵BD平分∠ABC,
∴∠DBC=25°,
∴∠BDC=180°-25°-50°=105°,
故選:B.【點(diǎn)睛】本題考查了圓內(nèi)接四邊形的性質(zhì),關(guān)鍵是根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠C的度數(shù).9、B【解析】
首先連接OC,AO,由切線的性質(zhì),可得OC⊥AB,根據(jù)已知條件可得:OA=2OC,進(jìn)而求出∠AOC的度數(shù),則圓心角∠AOB可求,根據(jù)弧長(zhǎng)公式即可求出劣弧AB的長(zhǎng).【詳解】解:如圖,連接OC,AO,
∵大圓的一條弦AB與小圓相切,
∴OC⊥AB,
∵OA=6,OC=3,
∴OA=2OC,
∴∠A=30°,
∴∠AOC=60°,
∴∠AOB=120°,
∴劣弧AB的長(zhǎng)==4π,
故選B.【點(diǎn)睛】本題考查切線的性質(zhì),弧長(zhǎng)公式,熟練掌握切線的性質(zhì)是解題關(guān)鍵.10、B【解析】
如圖:過(guò)點(diǎn)E作HE⊥AD于點(diǎn)H,連接AE交GF于點(diǎn)N,連接BD,BE.由題意可得:DE=1,∠HDE=60°,△BCD是等邊三角形,即可求DH的長(zhǎng),HE的長(zhǎng),AE的長(zhǎng),
NE的長(zhǎng),EF的長(zhǎng),則可求sin∠AFG的值.【詳解】解:如圖:過(guò)點(diǎn)E作HE⊥AD于點(diǎn)H,連接AE交GF于點(diǎn)N,連接BD,BE.
∵四邊形ABCD是菱形,AB=4,∠DAB=60°,
∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB
∴∠HDE=∠DAB=60°,
∵點(diǎn)E是CD中點(diǎn)
∴DE=CD=1
在Rt△DEH中,DE=1,∠HDE=60°
∴DH=1,HE=
∴AH=AD+DH=5
在Rt△AHE中,AE==1
∴AN=NE=,AE⊥GF,AF=EF
∵CD=BC,∠DCB=60°
∴△BCD是等邊三角形,且E是CD中點(diǎn)
∴BE⊥CD,
∵BC=4,EC=1
∴BE=1
∵CD∥AB
∴∠ABE=∠BEC=90°
在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.
∴EF=由折疊性質(zhì)可得∠AFG=∠EFG,
∴sin∠EFG=sin∠AFG=,故選B.【點(diǎn)睛】本題考查了折疊問(wèn)題,菱形的性質(zhì),勾股定理,添加恰當(dāng)?shù)妮o助線構(gòu)造直角三角形,利用勾股定理求線段長(zhǎng)度是本題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
根據(jù)比例的性質(zhì),設(shè)x=5a,則y=2a,代入原式即可求解.【詳解】解:∵,∴設(shè)x=5a,則y=2a,那么.故答案為:.【點(diǎn)睛】本題主要考查了比例的性質(zhì),根據(jù)比例式用同一個(gè)未知數(shù)得出的值進(jìn)而求解是解題關(guān)鍵.12、【解析】試題解析:過(guò)點(diǎn)B作直線AC的垂線交直線AC于點(diǎn)F,如圖所示.∵△BCE的面積是△ADE的面積的2倍,E是AB的中點(diǎn),∴S△ABC=2S△BCE,S△ABD=2S△ADE,∴S△ABC=2S△ABD,且△ABC和△ABD的高均為BF,∴AC=2BD,∴OD=2OC.∵CD=k,∴點(diǎn)A的坐標(biāo)為(,3),點(diǎn)B的坐標(biāo)為(-,-),∴AC=3,BD=,∴AB=2AC=6,AF=AC+BD=,∴CD=k=.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、三角形的面積公式以及勾股定理.構(gòu)造直角三角形利用勾股定理巧妙得出k值是解題的關(guān)鍵.13、【解析】
設(shè)CD=AB=a,利用勾股定理可得到Rt△CDE中,DE2=CE2-CD2=1-2a2,Rt△DEP中,DE2=PD2-PE2=1-2PE,進(jìn)而得出PE=a2,再根據(jù)△DEP∽△DAB,即可得到,即,可得,即可得到AB的長(zhǎng)等于.【詳解】如圖,設(shè)CD=AB=a,則BC2=BD2-CD2=1-a2,
由折疊可得,CE=BC,BP=EP,
∴CE2=1-a2,
∴Rt△CDE中,DE2=CE2-CD2=1-2a2,
∵PE∥AB,∠A=90°,
∴∠PED=90°,
∴Rt△DEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,
∴PE=a2,
∵PE∥AB,
∴△DEP∽△DAB,
∴,即,
∴,
即a2+a-1=0,
解得(舍去),
∴AB的長(zhǎng)等于AB=.故答案為.14、-【解析】
根據(jù)二次根式的運(yùn)算法則即可求出答案.【詳解】原式=2.故答案為-.【點(diǎn)睛】本題考查二次根式的運(yùn)算法則,解題的關(guān)鍵是熟練運(yùn)用二次根式的運(yùn)算法則,本題屬于基礎(chǔ)題型.15、1【解析】
根據(jù)概率的公式進(jìn)行計(jì)算即可.【詳解】從5張上面分別寫著“加”“油”“向”“未”“來(lái)”這5個(gè)字的卡片中隨機(jī)抽取一張,則這張卡片上面恰好寫著“加”字的概率是15故答案為:15【點(diǎn)睛】考查概率的計(jì)算,明確概率的意義是解題的關(guān)鍵,概率等于所求情況數(shù)與總情況數(shù)的比.16、(-1,2)【解析】
因?yàn)榫€段AB是定值,故拋物線上的點(diǎn)到直線的距離最短,則面積最小,平移直線與拋物線的切點(diǎn)即為P點(diǎn),然后求得平移后的直線,聯(lián)立方程,解方程即可.【詳解】因?yàn)榫€段AB是定值,故拋物線上的點(diǎn)到直線的距離最短,則面積最小,若直線向上平移與拋物線相切,切點(diǎn)即為P點(diǎn),設(shè)平移后的直線為y=-x-2+b,∵直線y=-x-2+b與拋物線y=x2+x+2相切,∴x2+x+2=-x-2+b,即x2+2x+4-b=0,則△=4-4(4-b)=0,∴b=3,∴平移后的直線為y=-x+1,解得x=-1,y=2,∴P點(diǎn)坐標(biāo)為(-1,2),故答案為(-1,2).【點(diǎn)睛】本題主要考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,三角形的面積以及解方程等,理解直線向上平移與拋物線相切,切點(diǎn)即為P點(diǎn)是解題的關(guān)鍵.17、.【解析】
由正六邊形的性質(zhì)得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性質(zhì)得出∠ABF=∠BAC=∠BCA=30°,證出AG=BG,∠CBG=90°,由含30°角的直角三角形的性質(zhì)得出CG=2BG=2AG,即可得出答案.【詳解】∵六邊形ABCDEF是正六邊形,∴AB=BC=AF,∠ABC=∠BAF=120°,∴∠ABF=∠BAC=∠BCA=30°,∴AG=BG,∠CBG=90°,∴CG=2BG=2AG,∴=;故答案為:.【點(diǎn)睛】本題考查了正六邊形的性質(zhì)、等腰三角形的判定、含30°角的直角三角形的性質(zhì)等知識(shí);熟練掌握正六邊形的性質(zhì)和含30°角的直角三角形的性質(zhì)是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)2(3)1【解析】
(1)通過(guò)證明∠BED=∠DBE得到DB=DE;
(2)連接CD,如圖,證明△DBC為等腰直角三角形得到BC=BD=4,從而得到△ABC外接圓的半徑;
(3)證明△DBF∽△ADB,然后利用相似比求AD的長(zhǎng).【詳解】(1)證明:∵AD平分∠BAC,BE平分∠ABD,∴∠1=∠2,∠3=∠4,∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,∴DB=DE;(2)解:連接CD,如圖,∵∠BAC=10°,∴BC為直徑,∴∠BDC=10°,∵∠1=∠2,∴DB=BC,∴△DBC為等腰直角三角形,∴BC=BD=4,∴△ABC外接圓的半徑為2;(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,∴△DBF∽△ADB,∴=,即=,∴AD=1.【點(diǎn)睛】本題考查了三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點(diǎn),叫做三角形的外心.也考查了圓周角定理和相似三角形的判定與性質(zhì).19、(1)證明見解析;(2);(3);【解析】
(1)連接OA、AD,如圖,利用圓周角定理得到∠B=∠ADC,則可證明∠ADC=2∠ACP,利用CD為直徑得到∠DAC=90°,從而得到∠ADC=60°,∠C=30°,則∠AOP=60°,于是可證明∠OAP=90°,然后根據(jù)切線的判斷定理得到結(jié)論;(2)利用∠P=30°得到OP=2OA,則,從而得到⊙O的直徑;(3)作EH⊥AD于H,如圖,由點(diǎn)B等分半圓CD得到∠BAC=45°,則∠DAE=45°,設(shè)DH=x,則DE=2x,所以然后求出x即可得到DE的長(zhǎng).【詳解】(1)證明:連接OA、AD,如圖,∵∠B=2∠P,∠B=∠ADC,∴∠ADC=2∠P,∵AP=AC,∴∠P=∠ACP,∴∠ADC=2∠ACP,∵CD為直徑,∴∠DAC=90°,∴∠ADC=60°,∠C=30°,∴△ADO為等邊三角形,∴∠AOP=60°,而∠P=∠ACP=30°,∴∠OAP=90°,∴OA⊥PA,∴PA是⊙O的切線;(2)解:在Rt△OAP中,∵∠P=30°,∴OP=2OA,∴∴⊙O的直徑為;(3)解:作EH⊥AD于H,如圖,∵點(diǎn)B等分半圓CD,∴∠BAC=45°,∴∠DAE=45°,設(shè)DH=x,在Rt△DHE中,DE=2x,在Rt△AHE中,∴即解得∴【點(diǎn)睛】本題考查了切線的判定與性質(zhì):經(jīng)過(guò)半徑的外端且垂直于這條半徑的直線是圓的切線.圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑.判定切線時(shí)“連圓心和直線與圓的公共點(diǎn)”或“過(guò)圓心作這條直線的垂線”;有切線時(shí),常?!坝龅角悬c(diǎn)連圓心得半徑”.也考查了圓周角定理.20、(1)y=x2+x﹣;(2)y=﹣x+1;(3)當(dāng)x=﹣2時(shí),最大值為;(4)存在,點(diǎn)D的橫坐標(biāo)為﹣3或或﹣.【解析】
(1)設(shè)二次函數(shù)的表達(dá)式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即可求解;(2)OC∥DF,則即可求解;(3)由S△ACE=S△AME﹣S△CME即可求解;(4)分當(dāng)AP為平行四邊形的一條邊、對(duì)角線兩種情況,分別求解即可.【詳解】(1)設(shè)二次函數(shù)的表達(dá)式為:y=a(x+3)(x﹣1)=ax2+2ax﹣3a,即:解得:故函數(shù)的表達(dá)式為:①;(2)過(guò)點(diǎn)D作DF⊥x軸交于點(diǎn)F,過(guò)點(diǎn)E作y軸的平行線交直線AD于點(diǎn)M,∵OC∥DF,∴OF=5OA=5,故點(diǎn)D的坐標(biāo)為(﹣5,6),將點(diǎn)A、D的坐標(biāo)代入一次函數(shù)表達(dá)式:y=mx+n得:,解得:即直線AD的表達(dá)式為:y=﹣x+1,(3)設(shè)點(diǎn)E坐標(biāo)為則點(diǎn)M坐標(biāo)為則∵故S△ACE有最大值,當(dāng)x=﹣2時(shí),最大值為;(4)存在,理由:①當(dāng)AP為平行四邊形的一條邊時(shí),如下圖,設(shè)點(diǎn)D的坐標(biāo)為將點(diǎn)A向左平移2個(gè)單位、向上平移4個(gè)單位到達(dá)點(diǎn)P的位置,同樣把點(diǎn)D左平移2個(gè)單位、向上平移4個(gè)單位到達(dá)點(diǎn)Q的位置,則點(diǎn)Q的坐標(biāo)為將點(diǎn)Q的坐標(biāo)代入①式并解得:②當(dāng)AP為平行四邊形的對(duì)角線時(shí),如下圖,設(shè)點(diǎn)Q坐標(biāo)為點(diǎn)D的坐標(biāo)為(m,n),AP中點(diǎn)的坐標(biāo)為(0,2),該點(diǎn)也是DQ的中點(diǎn),則:即:將點(diǎn)D坐標(biāo)代入①式并解得:故點(diǎn)D的橫坐標(biāo)為:或或.【點(diǎn)睛】本題考查的是二次函數(shù)綜合運(yùn)用,涉及到圖形平移、平行四邊形的性質(zhì)等,關(guān)鍵是(4)中,用圖形平移的方法求解點(diǎn)的坐標(biāo),本題難度大.21、(1)圖形見解析;(2)圖形見解析;(3)圖
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司車位分配管理制度
- 小學(xué)課間活動(dòng)管理制度
- 關(guān)于工齡工資管理制度
- 單位食堂保潔管理制度
- 平安證券薪酬管理制度
- 公司單身公寓管理制度
- 學(xué)校寢室職工管理制度
- 員工餐廳訂餐管理制度
- 醫(yī)院日??记诠芾碇贫?/a>
- 農(nóng)家書屋衛(wèi)生管理制度
- 2025年國(guó)際金融理財(cái)師考試全球經(jīng)濟(jì)影響因素試題及答案
- 可研報(bào)告-輸電線路實(shí)時(shí)視頻監(jiān)控系統(tǒng)的安裝
- 產(chǎn)科危急重癥早期識(shí)別中國(guó)專家共識(shí)(2024年版)解讀
- 倉(cāng)庫(kù)安全測(cè)試題及答案
- 2025-2030中國(guó)試驗(yàn)用動(dòng)物模型行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略研究報(bào)告
- 防詐騙知識(shí)培訓(xùn)課件內(nèi)容
- 孩子撫養(yǎng)協(xié)議書電子版(2025年版)
- 【初中生物】光合作用(第1課時(shí))課件-2024-2025學(xué)年人教版生物學(xué)七年級(jí)下冊(cè)
- 2025-2030中國(guó)建筑信息模型(BIM)行業(yè)發(fā)展?fàn)顩r與前景趨勢(shì)研究研究報(bào)告
- 陽(yáng)光心理健康成長(zhǎng)(課件)-小學(xué)生主題班會(huì)
- 羊肚菌種植項(xiàng)目可行性研究報(bào)告
評(píng)論
0/150
提交評(píng)論