2025年山東省青島市嶗山三中學(xué)初三下學(xué)期3月考試數(shù)學(xué)試題含解析_第1頁
2025年山東省青島市嶗山三中學(xué)初三下學(xué)期3月考試數(shù)學(xué)試題含解析_第2頁
2025年山東省青島市嶗山三中學(xué)初三下學(xué)期3月考試數(shù)學(xué)試題含解析_第3頁
2025年山東省青島市嶗山三中學(xué)初三下學(xué)期3月考試數(shù)學(xué)試題含解析_第4頁
2025年山東省青島市嶗山三中學(xué)初三下學(xué)期3月考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2025年山東省青島市嶗山三中學(xué)初三下學(xué)期3月考試數(shù)學(xué)試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.不等式組中兩個不等式的解集,在數(shù)軸上表示正確的是A. B.C. D.2.如圖,△ABC中,D為BC的中點,以D為圓心,BD長為半徑畫一弧交AC于E點,若∠A=60°,∠B=100°,BC=4,則扇形BDE的面積為何?()A. B. C. D.3.一輛慢車和一輛快車沿相同的路線從A地到B地,所行駛的路程與時間的函數(shù)圖形如圖所示,下列說法正確的有()①快車追上慢車需6小時;②慢車比快車早出發(fā)2小時;③快車速度為46km/h;④慢車速度為46km/h;⑤A、B兩地相距828km;⑥快車從A地出發(fā)到B地用了14小時A.2個 B.3個 C.4個 D.5個4.如圖,將△ABC繞點A逆時針旋轉(zhuǎn)一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度數(shù)為().A.60° B.75° C.85° D.90°5.如圖,O為坐標(biāo)原點,四邊彤OACB是菱形,OB在x軸的正半軸上,sin∠AOB=45,反比例函數(shù)yA.10B.9C.8D.66.將三粒均勻的分別標(biāo)有,,,,,的正六面體骰子同時擲出,朝上一面上的數(shù)字分別為,,,則,,正好是直角三角形三邊長的概率是()A. B. C. D.7.=()A.±4 B.4 C.±2 D.28.如果一個多邊形的內(nèi)角和是外角和的3倍,則這個多邊形的邊數(shù)是()A.8 B.9 C.10 D.119.下面的幾何圖形是由四個相同的小正方體搭成的,其中主視圖和左視圖相同的是()A.B.C.D.10.一組數(shù)據(jù)8,3,8,6,7,8,7的眾數(shù)和中位數(shù)分別是()A.8,6B.7,6C.7,8D.8,7二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,BP是△ABC中∠ABC的平分線,CP是∠ACB的外角的平分線,如果∠ABP=20°,∠ACP=50°,則∠P=______°.12.如圖,在邊長為1正方形ABCD中,點P是邊AD上的動點,將△PAB沿直線BP翻折,點A的對應(yīng)點為點Q,連接BQ、DQ.則當(dāng)BQ+DQ的值最小時,tan∠ABP=_____.13.當(dāng)__________時,二次函數(shù)有最小值___________.14.某個“清涼小屋”自動售貨機出售A、B、C三種飲料.A、B、C三種飲料的單價分別是2元/瓶、3元/瓶、5元/瓶.工作日期間,每天上貨量是固定的,且能全部售出,其中,A飲科的數(shù)量(單位:瓶)是B飲料數(shù)量的2倍,B飲料的數(shù)量(單位:瓶)是C飲料數(shù)量的2倍.某個周六,A、B、C三種飲料的上貨量分別比一個工作日的上貨量增加了50%、60%、50%,且全部售出.但是由于軟件bug,發(fā)生了一起錯單(即消費者按某種飲料一瓶的價格投幣,但是取得了另一種飲料1瓶),結(jié)果這個周六的銷售收入比一個工作日的銷售收入多了503元.則這個“清涼小屋”自動售貨機一個工作日的銷售收入是_____元.15.如圖,點E在正方形ABCD的外部,∠DCE=∠DEC,連接AE交CD于點F,∠CDE的平分線交EF于點G,AE=2DG.若BC=8,則AF=_____.16.已知是二元一次方程組的解,則m+3n的立方根為__.三、解答題(共8題,共72分)17.(8分)某學(xué)校環(huán)保志愿者協(xié)會對該市城區(qū)的空氣質(zhì)量進行調(diào)查,從全年365天中隨機抽取了80天的空氣質(zhì)量指數(shù)(AQI)數(shù)據(jù),繪制出三幅不完整的統(tǒng)計圖表,請根據(jù)圖表中提供的信息解答下列問題:AQI指數(shù)質(zhì)量等級天數(shù)(天)0-50優(yōu)m51-100良44101-150輕度污染n151-200中度污染4201-300重度污染2300以上嚴(yán)重污染2(1)統(tǒng)計表中m=,n=,扇形統(tǒng)計圖中,空氣質(zhì)量等級為“良”的天數(shù)占%;(2)補全條形統(tǒng)計圖,并通過計算估計該市城區(qū)全年空氣質(zhì)量等級為“優(yōu)”和“良”的天數(shù)共多少?18.(8分)某學(xué)?!爸腔鄯綀@”數(shù)學(xué)社團遇到這樣一個題目:如圖1,在△ABC中,點O在線段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的長.經(jīng)過社團成員討論發(fā)現(xiàn),過點B作BD∥AC,交AO的延長線于點D,通過構(gòu)造△ABD就可以解決問題(如圖2).請回答:∠ADB=°,AB=.請參考以上解決思路,解決問題:如圖3,在四邊形ABCD中,對角線AC與BD相交于點O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的長.19.(8分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,過點D作⊙O的切線DE交AC于點E.(1)求證:∠A=∠ADE;(2)若AB=25,DE=10,弧DC的長為a,求DE、EC和弧DC圍成的部分的面積S.(用含字母a的式子表示).20.(8分)如圖,要修一個育苗棚,棚的橫截面是,棚高,長,棚頂與地面的夾角為.求覆蓋在頂上的塑料薄膜需多少平方米(結(jié)果保留小數(shù)點后一位).(參考數(shù)據(jù):,,)21.(8分)在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與點B、C重合),以AD為直角邊在AD右側(cè)作等腰三角形ADE,使∠DAE=90°,連接CE.探究:如圖①,當(dāng)點D在線段BC上時,證明BC=CE+CD.應(yīng)用:在探究的條件下,若AB=,CD=1,則△DCE的周長為.拓展:(1)如圖②,當(dāng)點D在線段CB的延長線上時,BC、CD、CE之間的數(shù)量關(guān)系為.(2)如圖③,當(dāng)點D在線段BC的延長線上時,BC、CD、CE之間的數(shù)量關(guān)系為.22.(10分)如圖,在長方形OABC中,O為平面直角坐標(biāo)系的原點,點A坐標(biāo)為(a,0),點C的坐標(biāo)為(0,b),且a、b滿足+|b﹣6|=0,點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著O﹣C﹣B﹣A﹣O的線路移動.a(chǎn)=,b=,點B的坐標(biāo)為;當(dāng)點P移動4秒時,請指出點P的位置,并求出點P的坐標(biāo);在移動過程中,當(dāng)點P到x軸的距離為5個單位長度時,求點P移動的時間.23.(12分)某校對學(xué)生就“食品安全知識”進行了抽樣調(diào)查(每人選填一類),繪制了如圖所示的兩幅統(tǒng)計圖(不完整)。請根據(jù)圖中信息,解答下列問題:(1)根據(jù)圖中數(shù)據(jù),求出扇形統(tǒng)計圖中的值,并補全條形統(tǒng)計圖。(2)該校共有學(xué)生900人,估計該校學(xué)生對“食品安全知識”非常了解的人數(shù).24.如圖,點D是AB上一點,E是AC的中點,連接DE并延長到F,使得DE=EF,連接CF.求證:FC∥AB.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】由①得,x<3,由②得,x≥1,所以不等式組的解集為:1≤x<3,在數(shù)軸上表示為:,故選B.2、C【解析】分析:求出扇形的圓心角以及半徑即可解決問題;詳解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故選C.點睛:本題考查扇形的面積公式、三角形內(nèi)角和定理等知識,解題的關(guān)鍵是記住扇形的面積公式:S=.3、B【解析】

根據(jù)圖形給出的信息求出兩車的出發(fā)時間,速度等即可解答.【詳解】解:①兩車在276km處相遇,此時快車行駛了4個小時,故錯誤.②慢車0時出發(fā),快車2時出發(fā),故正確.③快車4個小時走了276km,可求出速度為69km/h,錯誤.④慢車6個小時走了276km,可求出速度為46km/h,正確.⑤慢車走了18個小時,速度為46km/h,可得A,B距離為828km,正確.⑥快車2時出發(fā),14時到達,用了12小時,錯誤.故答案選B.本題考查了看圖手機信息的能力,注意快車并非0時刻出發(fā)是解題關(guān)鍵.4、C【解析】試題分析:根據(jù)旋轉(zhuǎn)的性質(zhì)知,∠EAC=∠BAD=65°,∠C=∠E=70°.如圖,設(shè)AD⊥BC于點F.則∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度數(shù)為85°.故選C.考點:旋轉(zhuǎn)的性質(zhì).5、A【解析】過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,設(shè)OA=a,BF=b,通過解直角三角形分別找出點A、F的坐標(biāo),結(jié)合反比例函數(shù)圖象上點的坐標(biāo)特征即可求出a、b的值,通過分割圖形求面積,最終找出△AOF的面積等于梯形AMNF的面積,利用梯形的面積公式即可得出結(jié)論.解:過點A作AM⊥x軸于點M,過點F作FN⊥x軸于點N,如圖所示.設(shè)OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45∴AM=OA?sin∠AOB=45a,OM=OA2∴點A的坐標(biāo)為(35a,4∵點A在反比例函數(shù)y=12x∴35a×45a=1225解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四邊形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=45∴FN=BF?sin∠FBN=45b,BN=BF2∴點F的坐標(biāo)為(10+35b,4∵點F在反比例函數(shù)y=12x∴(10+35b)×4S△AOF=S△AOM+S梯形AMNF﹣S△OFN=S梯形AMNF=10故選A.“點睛”本題主要考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是找出S△AOF=12S菱形OBCA6、C【解析】

三粒均勻的正六面體骰子同時擲出共出現(xiàn)216種情況,而邊長能構(gòu)成直角三角形的數(shù)字為3、4、5,含這三個數(shù)字的情況有6種,故由概率公式計算即可.【詳解】解:因為將三粒均勻的分別標(biāo)有1,2,3,4,5,6的正六面體骰子同時擲出,按出現(xiàn)數(shù)字的不同共=216種情況,其中數(shù)字分別為3,4,5,是直角三角形三邊長時,有6種情況,所以其概率為,故選C.本題考查的是概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.邊長為3,4,5的三角形組成直角三角形.7、B【解析】

表示16的算術(shù)平方根,為正數(shù),再根據(jù)二次根式的性質(zhì)化簡.【詳解】解:,故選B.本題考查了算術(shù)平方根,本題難點是平方根與算術(shù)平方根的區(qū)別與聯(lián)系,一個正數(shù)算術(shù)平方根有一個,而平方根有兩個.8、A【解析】分析:根據(jù)多邊形的內(nèi)角和公式及外角的特征計算.詳解:多邊形的外角和是360°,根據(jù)題意得:

110°?(n-2)=3×360°

解得n=1.

故選A.點睛:本題主要考查了多邊形內(nèi)角和公式及外角的特征.求多邊形的邊數(shù),可以轉(zhuǎn)化為方程的問題來解決.9、C【解析】試題分析:觀察可得,只有選項C的主視圖和左視圖相同,都為,故答案選C.考點:簡單幾何體的三視圖.10、D【解析】試題分析:根據(jù)中位數(shù)和眾數(shù)的定義分別進行解答即可.把這組數(shù)據(jù)從小到大排列:3,6,7,7,8,8,8,8出現(xiàn)了3次,出現(xiàn)的次數(shù)最多,則眾數(shù)是8;最中間的數(shù)是7,則這組數(shù)據(jù)的中位數(shù)是7考點:(1)眾數(shù);(2)中位數(shù).二、填空題(本大題共6個小題,每小題3分,共18分)11、30【解析】

根據(jù)角平分線的定義可得∠PBC=20°,∠PCM=50°,根據(jù)三角形外角性質(zhì)即可求出∠P的度數(shù).【詳解】∵BP是∠ABC的平分線,CP是∠ACM的平分線,∠ABP=20°,∠ACP=50°,∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案為:30本題考查及角平分線的定義及三角形外角性質(zhì),三角形的外角等于和它不相鄰的兩個內(nèi)角的和,熟練掌握三角形外角性質(zhì)是解題關(guān)鍵.12、﹣1【解析】

連接DB,若Q點落在BD上,此時和最短,且為,設(shè)AP=x,則PD=1﹣x,PQ=x.解直角三角形得到AP=﹣1,根據(jù)三角函數(shù)的定義即可得到結(jié)論.【詳解】如圖:連接DB,若Q點落在BD上,此時和最短,且為,設(shè)AP=x,則PD=1﹣x,PQ=x.∵∠PDQ=45°,∴PD=PQ,即1﹣x=,∴x=﹣1,∴AP=﹣1,∴tan∠ABP==﹣1,故答案為:﹣1.本題考查了翻折變換(折疊問題),正方形的性質(zhì),軸對稱﹣最短路線問題,正確的理解題意是解題的關(guān)鍵.13、15【解析】二次函數(shù)配方,得:,所以,當(dāng)x=1時,y有最小值5,故答案為1,5.14、950【解析】

設(shè)工作日期間C飲料數(shù)量為x瓶,則B飲料數(shù)量為2x瓶,A飲料數(shù)量為4x瓶,得到工作日期間一天的銷售收入為:8x+6x+5x=19x元,和周六銷售銷售收入為:12x+9.6x+7.5x=29.1x元,再結(jié)合題意得到10.1x﹣(5﹣3)=503,計算即可得到答案.【詳解】解:設(shè)工作日期間C飲料數(shù)量為x瓶,則B飲料數(shù)量為2x瓶,A飲料數(shù)量為4x瓶,工作日期間一天的銷售收入為:8x+6x+5x=19x元,周六C飲料數(shù)量為1.5x瓶,則B飲料數(shù)量為3.2x瓶,A飲料數(shù)量為6x瓶,周六銷售銷售收入為:12x+9.6x+7.5x=29.1x元,周六銷售收入與工作日期間一天銷售收入的差為:29.1x﹣19x=10.1x元,由于發(fā)生一起錯單,收入的差為503元,因此,503加減一瓶飲料的差價一定是10.1的整數(shù)倍,所以這起錯單發(fā)生在B、C飲料上(B、C一瓶的差價為2元),且是消費者付B飲料的錢,取走的是C飲料;于是有:10.1x﹣(5﹣3)=503解得:x=50工作日期間一天的銷售收入為:19×50=950元,故答案為:950.本題考查一元一次方程的實際應(yīng)用,解題的關(guān)鍵是由題意得到等量關(guān)系.15、【解析】

如圖作DH⊥AE于H,連接CG.設(shè)DG=x,∵∠DCE=∠DEC,∴DC=DE,∵四邊形ABCD是正方形,∴AD=DC,∠ADF=90°,∴DA=DE,∵DH⊥AE,∴AH=HE=DG,在△GDC與△GDE中,,∴△GDC≌△GDE(SAS),∴GC=GE,∠DEG=∠DCG=∠DAF,∵∠AFD=∠CFG,∴∠ADF=∠CGF=90°,∴2∠GDE+2∠DEG=90°,∴∠GDE+∠DEG=45°,∴∠DGH=45°,在Rt△ADH中,AD=8,AH=x,DH=x,∴82=x2+(x)2,解得:x=,∵△ADH∽△AFD,∴,∴AF==4.故答案為4.16、3【解析】

把x與y的值代入方程組求出m與n的值,即可確定出所求.【詳解】解:把代入方程組得:相加得:m+3n=27,則27的立方根為3,故答案為3此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程左右兩邊相等的未知數(shù)的值.三、解答題(共8題,共72分)17、(1)m=20,n=8;55;(2)答案見解析.【解析】

(1)由A占25%,即可求得m的值,繼而求得n的值,然后求得空氣質(zhì)量等級為“良”的天數(shù)占的百分比;(2)首先由(1)補全統(tǒng)計圖,然后利用樣本估計總體的知識求解即可求得答案.【詳解】(1)∵m=80×25%=20,n=80-20-44-4-2-2=8,∴空氣質(zhì)量等級為“良”的天數(shù)占:×100%=55%.故答案為20,8,55;(2)估計該市城區(qū)全年空氣質(zhì)量等級為“優(yōu)”和“良”的天數(shù)共:365×(25%+55%)=292(天),答:估計該市城區(qū)全年空氣質(zhì)量等級為“優(yōu)”和“良”的天數(shù)共292天;補全統(tǒng)計圖:此題考查了條形圖與扇形圖的知識.讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.18、(1)75;4;(2)CD=4.【解析】

(1)根據(jù)平行線的性質(zhì)可得出∠ADB=∠OAC=75°,結(jié)合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性質(zhì)可求出OD的值,進而可得出AD的值,由三角形內(nèi)角和定理可得出∠ABD=75°=∠ADB,由等角對等邊可得出AB=AD=4,此題得解;(2)過點B作BE∥AD交AC于點E,同(1)可得出AE=4,在Rt△AEB中,利用勾股定理可求出BE的長度,再在Rt△CAD中,利用勾股定理可求出DC的長,此題得解.【詳解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴.又∵AO=3,∴OD=AO=,∴AD=AO+OD=4.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=4.(2)過點B作BE∥AD交AC于點E,如圖所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴.∵BO:OD=1:3,∴.∵AO=3,∴EO=,∴AE=4.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=1.在Rt△CAD中,AC2+AD2=CD2,即82+12=CD2,解得:CD=4.本題考查了相似三角形的性質(zhì)、等腰三角形的判定與性質(zhì)、勾股定理以及平行線的性質(zhì),解題的關(guān)鍵是:(1)利用相似三角形的性質(zhì)求出OD的值;(2)利用勾股定理求出BE、CD的長度.19、(1)見解析;(2)75﹣a.【解析】

(1)連接CD,求出∠ADC=90°,根據(jù)切線長定理求出DE=EC,即可求出答案;(2)連接CD、OD、OE,求出扇形DOC的面積,分別求出△ODE和△OCE的面積,即可求出答案【詳解】(1)證明:連接DC,∵BC是⊙O直徑,∴∠BDC=90°,∴∠ADC=90°,∵∠C=90°,BC為直徑,∴AC切⊙O于C,∵過點D作⊙O的切線DE交AC于點E,∴DE=CE,∴∠EDC=∠ECD,∵∠ACB=∠ADC=90°,∴∠A+∠ACD=90°,∠ADE+∠EDC=90°,∴∠A=∠ADE;(2)解:連接CD、OD、OE,∵DE=10,DE=CE,∴CE=10,∵∠A=∠ADE,∴AE=DE=10,∴AC=20,∵∠ACB=90°,AB=25,∴由勾股定理得:BC===15,∴CO=OD=,∵的長度是a,∴扇形DOC的面積是×a×=a,∴DE、EC和弧DC圍成的部分的面積S=××10+×10﹣a=75﹣a.本題考查了圓周角定理,切線的性質(zhì),切線長定理,等腰三角形的性質(zhì)和判定,勾股定理,扇形的面積,三角形的面積等知識點,能綜合運用知識點進行推理和計算是解此題的關(guān)鍵.20、33.3【解析】

根據(jù)解直角三角形的知識先求出AC的值,再根據(jù)矩形的面積計算方法求解即可.【詳解】解:∵AC====∴矩形面積=10≈33.3(平方米)答:覆蓋在頂上的塑料薄膜需33.3平方米本題考查了解直角三角形的應(yīng)用,掌握正弦的定義是解題的關(guān)鍵.21、探究:證明見解析;應(yīng)用:;拓展:(1)BC=CD-CE,(2)BC=CE-CD【解析】試題分析:探究:判斷出∠BAD=∠CAE,再用SAS即可得出結(jié)論;

應(yīng)用:先算出BC,進而算出BD,再用勾股定理求出DE,即可得出結(jié)論;

拓展:(1)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結(jié)論;

(2)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出結(jié)論.試題解析:探究:∵∠BAC=90°,∠DAE=90°,

∴∠BAC=∠DAE.

∵∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DAC,

∴∠BAD=∠CAE.

∵AB=AC,AD=AE,

∴△ABD≌△ACE.

∴BD=CE.

∵BC=BD+CD,

∴BC=CE+CD.

應(yīng)用:在Rt△ABC中,AB=AC=,

∴∠ABC=∠ACB=45°,BC=2,

∵CD=1,

∴BD=BC-CD=1,

由探究知,△ABD≌△ACE,

∴∠ACE=∠ABD=45°,

∴∠DCE=90°,

在Rt△BCE中,CD=1,CE=BD=1,

根據(jù)勾股定理得,DE=,

∴△DCE的周長為CD+CE+DE=2+

故答案為2+拓展:(1)同探究的方法得,△ABD≌△ACE.∴BD=CE

∴BC=CD-BD=CD-CE,

故答案為BC=CD-CE;(2)同探究的方法得,△ABD≌△ACE.

∴BD=CE

∴BC=BD-CD=CE-CD,

故答案為BC=CE-CD.22、(1)4,6,(4,6);(2)點P在線段CB上,點P的坐標(biāo)是(2,6);(3)點P移動的時間是2.5秒或5.5秒.【解析】試題分析:(1)根據(jù)可以求得的值,根據(jù)長方形的性質(zhì),可以求得點的坐標(biāo);

(2)根據(jù)題意點從原點出發(fā),以每秒2個單位長度的速度沿著的線路移動,可以得到當(dāng)點移動4秒時,點的位置和點的坐標(biāo);

(3)由題意可以得到符合要求的有兩種情況,分別求出兩種情況下點移動的時間即可.試題解析:(1)∵a、b滿足∴a?4=0,b?6=0,解得a=4,b=6,∴點B的坐標(biāo)是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論