版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省揚(yáng)州市廣陵區(qū)梅嶺中學(xué)2021-2022學(xué)年中考數(shù)學(xué)五模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,在中,E為邊CD上一點(diǎn),將沿AE折疊至處,與CE交于點(diǎn)F,若,,則的大小為()A.20° B.30° C.36° D.40°2.若點(diǎn)A(a,b),B(,c)都在反比例函數(shù)y=的圖象上,且﹣1<c<0,則一次函數(shù)y=(b﹣c)x+ac的大致圖象是()A. B.C. D.3.如果邊長(zhǎng)相等的正五邊形和正方形的一邊重合,那么∠1的度數(shù)是()A.30° B.15° C.18° D.20°4.下列圖形中,屬于中心對(duì)稱圖形的是()A. B.C. D.5.已知反比例函數(shù)y=的圖象在一、三象限,那么直線y=kx﹣k不經(jīng)過(guò)第()象限.A.一 B.二 C.三 D.四6.如圖是由五個(gè)相同的小立方塊搭成的幾何體,則它的俯視圖是()A. B. C. D.7.整數(shù)a、b在數(shù)軸上對(duì)應(yīng)點(diǎn)的位置如圖,實(shí)數(shù)c在數(shù)軸上且滿足,如果數(shù)軸上有一實(shí)數(shù)d,始終滿足,則實(shí)數(shù)d應(yīng)滿足().A. B. C. D.8.某校八年級(jí)兩個(gè)班,各選派10名學(xué)生參加學(xué)校舉行的“古詩(shī)詞”大賽,各參賽選手成績(jī)的數(shù)據(jù)分析如表所示,則以下判斷錯(cuò)誤的是()班級(jí)平均數(shù)中位數(shù)眾數(shù)方差八(1)班94939412八(2)班9595.5938.4A.八(2)班的總分高于八(1)班B.八(2)班的成績(jī)比八(1)班穩(wěn)定C.兩個(gè)班的最高分在八(2)班D.八(2)班的成績(jī)集中在中上游9.如圖,矩形ABCD中,E為DC的中點(diǎn),AD:AB=:2,CP:BP=1:2,連接EP并延長(zhǎng),交AB的延長(zhǎng)線于點(diǎn)F,AP、BE相交于點(diǎn)O.下列結(jié)論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④10.如圖,在正八邊形ABCDEFGH中,連接AC,AE,則的值是()A.1 B. C.2 D.11.單項(xiàng)式2a3b的次數(shù)是()A.2 B.3 C.4 D.512.某種植基地2016年蔬菜產(chǎn)量為80噸,預(yù)計(jì)2018年蔬菜產(chǎn)量達(dá)到100噸,求蔬菜產(chǎn)量的年平均增長(zhǎng)率,設(shè)蔬菜產(chǎn)量的年平均增長(zhǎng)率為x,則可列方程為()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,10塊相同的長(zhǎng)方形墻磚拼成一個(gè)長(zhǎng)方形,設(shè)長(zhǎng)方形墻磚的長(zhǎng)為x厘米,則依題意列方程為_(kāi)________.14.當(dāng)x________時(shí),分式有意義.15.將三角形紙片()按如圖所示的方式折疊,使點(diǎn)落在邊上,記為點(diǎn),折痕為,已知,,若以點(diǎn),,為頂點(diǎn)的三角形與相似,則的長(zhǎng)度是______.16.如圖,O是坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)A的坐標(biāo)為(﹣3,﹣4),頂點(diǎn)C在x軸的負(fù)半軸上,函數(shù)y=(x<0)的圖象經(jīng)過(guò)菱形OABC中心E點(diǎn),則k的值為_(kāi)____.17.化簡(jiǎn):_____________.18.已知整數(shù)k<5,若△ABC的邊長(zhǎng)均滿足關(guān)于x的方程,則△ABC的周長(zhǎng)是.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖,拋物線y=x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其對(duì)稱軸交拋物線于點(diǎn)D,交x軸于點(diǎn)E,已知OB=OC=1.(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);(2)連接BD,F(xiàn)為拋物線上一動(dòng)點(diǎn),當(dāng)∠FAB=∠EDB時(shí),求點(diǎn)F的坐標(biāo);(3)平行于x軸的直線交拋物線于M、N兩點(diǎn),以線段MN為對(duì)角線作菱形MPNQ,當(dāng)點(diǎn)P在x軸上,且PQ=MN時(shí),求菱形對(duì)角線MN的長(zhǎng).20.(6分)如圖,經(jīng)過(guò)點(diǎn)C(0,﹣4)的拋物線()與x軸相交于A(﹣2,0),B兩點(diǎn).(1)a0,0(填“>”或“<”);(2)若該拋物線關(guān)于直線x=2對(duì)稱,求拋物線的函數(shù)表達(dá)式;(3)在(2)的條件下,連接AC,E是拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)E作AC的平行線交x軸于點(diǎn)F.是否存在這樣的點(diǎn)E,使得以A,C,E,F(xiàn)為頂點(diǎn)所組成的四邊形是平行四邊形?若存在,求出滿足條件的點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.21.(6分)如圖,在⊿中,,于,.⑴.求的長(zhǎng);⑵.求的長(zhǎng).22.(8分)先化簡(jiǎn),再求值:(x﹣3)÷(﹣1),其中x=﹣1.23.(8分)如圖(1),已知點(diǎn)G在正方形ABCD的對(duì)角線AC上,GE⊥BC,垂足為點(diǎn)E,GF⊥CD,垂足為點(diǎn)F.(1)證明與推斷:①求證:四邊形CEGF是正方形;②推斷:的值為:(2)探究與證明:將正方形CEGF繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)α角(0°<α<45°),如圖(2)所示,試探究線段AG與BE之間的數(shù)量關(guān)系,并說(shuō)明理由:(3)拓展與運(yùn)用:正方形CEGF在旋轉(zhuǎn)過(guò)程中,當(dāng)B,E,F(xiàn)三點(diǎn)在一條直線上時(shí),如圖(3)所示,延長(zhǎng)CG交AD于點(diǎn)H.若AG=6,GH=2,則BC=.24.(10分)如圖1,在Rt△ABC中,∠C=90°,AC=BC=2,點(diǎn)D、E分別在邊AC、AB上,AD=DE=AB,連接DE.將△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為θ.(1)問(wèn)題發(fā)現(xiàn)①當(dāng)θ=0°時(shí),=;②當(dāng)θ=180°時(shí),=.(2)拓展探究試判斷:當(dāng)0°≤θ<360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情形給出證明;(3)問(wèn)題解決①在旋轉(zhuǎn)過(guò)程中,BE的最大值為;②當(dāng)△ADE旋轉(zhuǎn)至B、D、E三點(diǎn)共線時(shí),線段CD的長(zhǎng)為.25.(10分)為了獎(jiǎng)勵(lì)優(yōu)秀班集體,學(xué)校購(gòu)買了若干副乒乓球拍和羽毛球拍,購(gòu)買2副乒乓球拍和1副羽毛球拍共需116元,購(gòu)買3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的單價(jià)各是多少元?若學(xué)校購(gòu)買5副乒乓球拍和3副羽毛球拍,一共應(yīng)支出多少元?26.(12分)(1)計(jì)算:()﹣1+﹣(π﹣2018)0﹣4cos30°(2)解不等式組:,并把它的解集在數(shù)軸上表示出來(lái).27.(12分)如圖1在正方形ABCD的外側(cè)作兩個(gè)等邊三角形ADE和DCF,連接AF,BE.請(qǐng)判斷:AF與BE的數(shù)量關(guān)系是,位置關(guān)系;如圖2,若將條件“兩個(gè)等邊三角形ADE和DCF”變?yōu)椤皟蓚€(gè)等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問(wèn)中的結(jié)論是否仍然成立?請(qǐng)作出判斷并給予證明;若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問(wèn)中的結(jié)論都能成立嗎?請(qǐng)直接寫出你的判斷.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】
由平行四邊形的性質(zhì)得出∠D=∠B=52°,由折疊的性質(zhì)得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性質(zhì)求出∠AEF=72°,由三角形內(nèi)角和定理求出∠AED′=108°,即可得出∠FED′的大?。驹斀狻俊咚倪呅蜛BCD是平行四邊形,∴,由折疊的性質(zhì)得:,,∴,,∴;故選C.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)、折疊的性質(zhì)、三角形的外角性質(zhì)以及三角形內(nèi)角和定理;熟練掌握平行四邊形的性質(zhì)和折疊的性質(zhì),求出∠AEF和∠AED′是解決問(wèn)題的關(guān)鍵.2、D【解析】
將,代入,得,,然后分析與的正負(fù),即可得到的大致圖象.【詳解】將,代入,得,,即,.∴.∵,∴,∴.即與異號(hào).∴.又∵,故選D.【點(diǎn)睛】本題考查了反比例函數(shù)圖像上點(diǎn)的坐標(biāo)特征,一次函數(shù)的圖像與性質(zhì),得出與的正負(fù)是解答本題的關(guān)鍵.3、C【解析】
∠1的度數(shù)是正五邊形的內(nèi)角與正方形的內(nèi)角的度數(shù)的差,根據(jù)多邊形的內(nèi)角和定理求得角的度數(shù),進(jìn)而求解.【詳解】∵正五邊形的內(nèi)角的度數(shù)是×(5-2)×180°=108°,正方形的內(nèi)角是90°,
∴∠1=108°-90°=18°.故選C【點(diǎn)睛】本題考查了多邊形的內(nèi)角和定理、正五邊形和正方形的性質(zhì),求得正五邊形的內(nèi)角的度數(shù)是關(guān)鍵.4、B【解析】
A、將此圖形繞任意點(diǎn)旋轉(zhuǎn)180度都不能與原圖重合,所以這個(gè)圖形不是中心對(duì)稱圖形.【詳解】A、將此圖形繞任意點(diǎn)旋轉(zhuǎn)180度都不能與原圖重合,所以這個(gè)圖形不是中心對(duì)稱圖形;B、將此圖形繞中心點(diǎn)旋轉(zhuǎn)180度與原圖重合,所以這個(gè)圖形是中心對(duì)稱圖形;C、將此圖形繞任意點(diǎn)旋轉(zhuǎn)180度都不能與原圖重合,所以這個(gè)圖形不是中心對(duì)稱圖形;D、將此圖形繞任意點(diǎn)旋轉(zhuǎn)180度都不能與原圖重合,所以這個(gè)圖形不是中心對(duì)稱圖形.故選B.【點(diǎn)睛】本題考查了軸對(duì)稱與中心對(duì)稱圖形的概念:中心對(duì)稱圖形是要尋找對(duì)稱中心,旋轉(zhuǎn)180度后與原圖重合.5、B【解析】
根據(jù)反比例函數(shù)的性質(zhì)得k>0,然后根據(jù)一次函數(shù)的進(jìn)行判斷直線y=kx-k不經(jīng)過(guò)的象限.【詳解】∵反比例函數(shù)y=的圖象在一、三象限,∴k>0,∴直線y=kx﹣k經(jīng)過(guò)第一、三、四象限,即不經(jīng)過(guò)第二象限.故選:B.【點(diǎn)睛】考查了待定系數(shù)法求反比例函數(shù)的解析式:設(shè)出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=(k為常數(shù),k≠0);把已知條件(自變量與函數(shù)的對(duì)應(yīng)值)代入解析式,得到待定系數(shù)的方程;解方程,求出待定系數(shù);寫出解析式.也考查了反比例函數(shù)與一次函數(shù)的性質(zhì).6、A【解析】試題分析:從上面看易得上面一層有3個(gè)正方形,下面中間有一個(gè)正方形.故選A.【考點(diǎn)】簡(jiǎn)單組合體的三視圖.7、D【解析】
根據(jù)a≤c≤b,可得c的最小值是﹣1,根據(jù)有理數(shù)的加法,可得答案.【詳解】由a≤c≤b,得:c最小值是﹣1,當(dāng)c=﹣1時(shí),c+d=﹣1+d,﹣1+d≥0,解得:d≥1,∴d≥b.故選D.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸,利用a≤c≤b得出c的最小值是﹣1是解題的關(guān)鍵.8、C【解析】
直接利用表格中數(shù)據(jù),結(jié)合方差的定義以及算術(shù)平均數(shù)、中位數(shù)、眾數(shù)得出答案.【詳解】A選項(xiàng):八(2)班的平均分高于八(1)班且人數(shù)相同,所以八(2)班的總分高于八(1)班,正確;
B選項(xiàng):八(2)班的方差比八(1)班小,所以八(2)班的成績(jī)比八(1)班穩(wěn)定,正確;
C選項(xiàng):兩個(gè)班的最高分無(wú)法判斷出現(xiàn)在哪個(gè)班,錯(cuò)誤;
D選項(xiàng):八(2)班的中位數(shù)高于八(1)班,所以八(2)班的成績(jī)集中在中上游,正確;
故選C.【點(diǎn)睛】考查了方差的定義以及算術(shù)平均數(shù)、中位數(shù)、眾數(shù),利用表格獲取正確的信息是解題關(guān)鍵.9、B【解析】
由條件設(shè)AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運(yùn)用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結(jié)論.【詳解】解:設(shè)AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點(diǎn),∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過(guò)點(diǎn)E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯(cuò)誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點(diǎn)睛】本題考查了矩形的性質(zhì)的運(yùn)用,相似三角形的判定及性質(zhì)的運(yùn)用,特殊角的正切值的運(yùn)用,勾股定理的運(yùn)用及直角三角形的性質(zhì)的運(yùn)用,解答時(shí)根據(jù)比例關(guān)系設(shè)出未知數(shù)表示出線段的長(zhǎng)度是關(guān)鍵.10、B【解析】
連接AG、GE、EC,易知四邊形ACEG為正方形,根據(jù)正方形的性質(zhì)即可求解.【詳解】解:連接AG、GE、EC,則四邊形ACEG為正方形,故=.故選:B.【點(diǎn)睛】本題考查了正多邊形的性質(zhì),正確作出輔助線是關(guān)鍵.11、C【解析】分析:根據(jù)單項(xiàng)式的性質(zhì)即可求出答案.詳解:該單項(xiàng)式的次數(shù)為:3+1=4故選C.點(diǎn)睛:本題考查單項(xiàng)式的次數(shù)定義,解題的關(guān)鍵是熟練運(yùn)用單項(xiàng)式的次數(shù)定義,本題屬于基礎(chǔ)題型.12、A【解析】
利用增長(zhǎng)后的量=增長(zhǎng)前的量×(1+增長(zhǎng)率),設(shè)平均每次增長(zhǎng)的百分率為x,根據(jù)“從80噸增加到100噸”,即可得出方程.【詳解】由題意知,蔬菜產(chǎn)量的年平均增長(zhǎng)率為x,根據(jù)2016年蔬菜產(chǎn)量為80噸,則2017年蔬菜產(chǎn)量為80(1+x)噸,2018年蔬菜產(chǎn)量為80(1+x)(1+x)噸,預(yù)計(jì)2018年蔬菜產(chǎn)量達(dá)到100噸,即:80(1+x)2=100,故選A.【點(diǎn)睛】本題考查了一元二次方程的應(yīng)用(增長(zhǎng)率問(wèn)題).解題的關(guān)鍵在于理清題目的含義,找到2017年和2018年的產(chǎn)量的代數(shù)式,根據(jù)條件找準(zhǔn)等量關(guān)系式,列出方程.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、x+x=75.【解析】試題解析:設(shè)長(zhǎng)方形墻磚的長(zhǎng)為x厘米,
可得:x+x=75.14、x≠3【解析】由題意得x-3≠0,∴x≠3.15、或2【解析】
由折疊性質(zhì)可知B’F=BF,△B’FC與△ABC相似,有兩種情況,分別對(duì)兩種情況進(jìn)行討論,設(shè)出B’F=BF=x,列出比例式方程解方程即可得到結(jié)果.【詳解】由折疊性質(zhì)可知B’F=BF,設(shè)B’F=BF=x,故CF=4-x當(dāng)△B’FC∽△ABC,有,得到方程,解得x=,故BF=;當(dāng)△FB’C∽△ABC,有,得到方程,解得x=2,故BF=2;綜上BF的長(zhǎng)度可以為或2.【點(diǎn)睛】本題主要考查相似三角形性質(zhì),解題關(guān)鍵在于能夠?qū)蓚€(gè)相似三角形進(jìn)行分類討論.16、8【解析】
根據(jù)反比例函數(shù)的性質(zhì)結(jié)合點(diǎn)的坐標(biāo)利用勾股定理解答.【詳解】解:菱形OABC的頂點(diǎn)A的坐標(biāo)為(-3,-4),OA=OC=則點(diǎn)B的橫坐標(biāo)為-5-3=-8,點(diǎn)B的坐標(biāo)為(-8,-4),點(diǎn)C的坐標(biāo)為(-5,0)則點(diǎn)E的坐標(biāo)為(-4,-2),將點(diǎn)E的坐標(biāo)帶入y=(x<0)中,得k=8.給答案為:8.【點(diǎn)睛】此題重點(diǎn)考察學(xué)生對(duì)反比例函數(shù)性質(zhì)的理解,掌握坐標(biāo)軸點(diǎn)的求法和菱形性質(zhì)是解題的關(guān)鍵.17、【解析】
根據(jù)分式的運(yùn)算法則即可求解.【詳解】原式=.故答案為:.【點(diǎn)睛】此題主要考查分式的運(yùn)算,解題的關(guān)鍵是熟知分式的運(yùn)算法則.18、6或12或1.【解析】
根據(jù)題意得k≥0且(3)2﹣4×8≥0,解得k≥.∵整數(shù)k<5,∴k=4.∴方程變形為x2﹣6x+8=0,解得x1=2,x2=4.∵△ABC的邊長(zhǎng)均滿足關(guān)于x的方程x2﹣6x+8=0,∴△ABC的邊長(zhǎng)為2、2、2或4、4、4或4、4、2.∴△ABC的周長(zhǎng)為6或12或1.考點(diǎn):一元二次方程根的判別式,因式分解法解一元二次方程,三角形三邊關(guān)系,分類思想的應(yīng)用.【詳解】請(qǐng)?jiān)诖溯斎朐斀?!三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1),點(diǎn)D的坐標(biāo)為(2,-8)(2)點(diǎn)F的坐標(biāo)為(7,)或(5,)(3)菱形對(duì)角線MN的長(zhǎng)為或.【解析】分析:(1)利用待定系數(shù)法,列方程求二次函數(shù)解析式.(2)利用解析法,∠FAB=∠EDB,tan∠FAG=tan∠BDE,求出F點(diǎn)坐標(biāo).(3)分類討論,當(dāng)MN在x軸上方時(shí),在x軸下方時(shí)分別計(jì)算MN.詳解:(1)∵OB=OC=1,∴B(1,0),C(0,-1).∴,解得,∴拋物線的解析式為.∵=,∴點(diǎn)D的坐標(biāo)為(2,-8).(2)如圖,當(dāng)點(diǎn)F在x軸上方時(shí),設(shè)點(diǎn)F的坐標(biāo)為(x,).過(guò)點(diǎn)F作FG⊥x軸于點(diǎn)G,易求得OA=2,則AG=x+2,F(xiàn)G=.∵∠FAB=∠EDB,∴tan∠FAG=tan∠BDE,即,解得,(舍去).當(dāng)x=7時(shí),y=,∴點(diǎn)F的坐標(biāo)為(7,).當(dāng)點(diǎn)F在x軸下方時(shí),設(shè)同理求得點(diǎn)F的坐標(biāo)為(5,).綜上所述,點(diǎn)F的坐標(biāo)為(7,)或(5,).(3)∵點(diǎn)P在x軸上,∴根據(jù)菱形的對(duì)稱性可知點(diǎn)P的坐標(biāo)為(2,0).如圖,當(dāng)MN在x軸上方時(shí),設(shè)T為菱形對(duì)角線的交點(diǎn).∵PQ=MN,∴MT=2PT.設(shè)TP=n,則MT=2n.∴M(2+2n,n).∵點(diǎn)M在拋物線上,∴,即.解得,(舍去).∴MN=2MT=4n=.當(dāng)MN在x軸下方時(shí),設(shè)TP=n,得M(2+2n,-n).∵點(diǎn)M在拋物線上,∴,即.解得,(舍去).∴MN=2MT=4n=.綜上所述,菱形對(duì)角線MN的長(zhǎng)為或.點(diǎn)睛:1.求二次函數(shù)的解析式(1)已知二次函數(shù)過(guò)三個(gè)點(diǎn),利用一般式,y=ax2+bx+c().列方程組求二次函數(shù)解析式.(2)已知二次函數(shù)與x軸的兩個(gè)交點(diǎn)(,利用雙根式,y=()求二次函數(shù)解析式,而且此時(shí)對(duì)稱軸方程過(guò)交點(diǎn)的中點(diǎn),.2.處理直角坐標(biāo)系下,二次函數(shù)與幾何圖形問(wèn)題:第一步要寫出每個(gè)點(diǎn)的坐標(biāo)(不能寫出來(lái)的,可以用字母表示),寫已知點(diǎn)坐標(biāo)的過(guò)程中,經(jīng)常要做坐標(biāo)軸的垂線,第二步,利用特殊圖形的性質(zhì)和函數(shù)的性質(zhì),往往是解決問(wèn)題的鑰匙.20、(1)>,>;(2);(3)E(4,﹣4)或(,4)或(,4).【解析】
(1)由拋物線開(kāi)口向上,且與x軸有兩個(gè)交點(diǎn),即可做出判斷;(2)根據(jù)拋物線的對(duì)稱軸及A的坐標(biāo),確定出B的坐標(biāo),將A,B,C三點(diǎn)坐標(biāo)代入求出a,b,c的值,即可確定出拋物線解析式;(3)存在,分兩種情況討論:(i)假設(shè)存在點(diǎn)E使得以A,C,E,F(xiàn)為頂點(diǎn)所組成的四邊形是平行四邊形,過(guò)點(diǎn)C作CE∥x軸,交拋物線于點(diǎn)E,過(guò)點(diǎn)E作EF∥AC,交x軸于點(diǎn)F,如圖1所示;(ii)假設(shè)在拋物線上還存在點(diǎn)E′,使得以A,C,F(xiàn)′,E′為頂點(diǎn)所組成的四邊形是平行四邊形,過(guò)點(diǎn)E′作E′F′∥AC交x軸于點(diǎn)F′,則四邊形ACF′E′即為滿足條件的平行四邊形,可得AC=E′F′,AC∥E′F′,如圖2,過(guò)點(diǎn)E′作E′G⊥x軸于點(diǎn)G,分別求出E坐標(biāo)即可.【詳解】(1)a>0,>0;(2)∵直線x=2是對(duì)稱軸,A(﹣2,0),∴B(6,0),∵點(diǎn)C(0,﹣4),將A,B,C的坐標(biāo)分別代入,解得:,,,∴拋物線的函數(shù)表達(dá)式為;(3)存在,理由為:(i)假設(shè)存在點(diǎn)E使得以A,C,E,F(xiàn)為頂點(diǎn)所組成的四邊形是平行四邊形,過(guò)點(diǎn)C作CE∥x軸,交拋物線于點(diǎn)E,過(guò)點(diǎn)E作EF∥AC,交x軸于點(diǎn)F,如圖1所示,則四邊形ACEF即為滿足條件的平行四邊形,∵拋物線關(guān)于直線x=2對(duì)稱,∴由拋物線的對(duì)稱性可知,E點(diǎn)的橫坐標(biāo)為4,又∵OC=4,∴E的縱坐標(biāo)為﹣4,∴存在點(diǎn)E(4,﹣4);(ii)假設(shè)在拋物線上還存在點(diǎn)E′,使得以A,C,F(xiàn)′,E′為頂點(diǎn)所組成的四邊形是平行四邊形,過(guò)點(diǎn)E′作E′F′∥AC交x軸于點(diǎn)F′,則四邊形ACF′E′即為滿足條件的平行四邊形,∴AC=E′F′,AC∥E′F′,如圖2,過(guò)點(diǎn)E′作E′G⊥x軸于點(diǎn)G,∵AC∥E′F′,∴∠CAO=∠E′F′G,又∵∠COA=∠E′GF′=90°,AC=E′F′,∴△CAO≌△E′F′G,∴E′G=CO=4,∴點(diǎn)E′的縱坐標(biāo)是4,∴,解得:,,∴點(diǎn)E′的坐標(biāo)為(,4),同理可得點(diǎn)E″的坐標(biāo)為(,4).21、(1)25(2)12【解析】整體分析:(1)用勾股定理求斜邊AB的長(zhǎng);(2)用三角形的面積等于底乘以高的一半求解.解:(1).∵在⊿中,,.∴,(2).∵⊿,∴即,∴20×15=25CD.∴.22、﹣x+1,2.【解析】
先將括號(hào)內(nèi)的分式通分,再將乘方轉(zhuǎn)化為乘法,約分,最后代入數(shù)值求解即可.【詳解】原式=(x﹣2)÷(﹣)=(x﹣2)÷=(x﹣2)?=﹣x+1,當(dāng)x=﹣1時(shí),原式=1+1=2.【點(diǎn)睛】本題考查了整式的混合運(yùn)算-化簡(jiǎn)求值,解題的關(guān)鍵是熟練的掌握整式的混合運(yùn)算法則.23、(1)①四邊形CEGF是正方形;②;(2)線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)3【解析】
(1)①由、結(jié)合可得四邊形CEGF是矩形,再由即可得證;②由正方形性質(zhì)知、,據(jù)此可得、,利用平行線分線段成比例定理可得;(2)連接CG,只需證∽即可得;(3)證∽得,設(shè),知,由得、、,由可得a的值.【詳解】(1)①∵四邊形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四邊形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四邊形CEGF是正方形;②由①知四邊形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴,GE∥AB,∴,故答案為;(2)連接CG,由旋轉(zhuǎn)性質(zhì)知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=、=,∴=,∴△ACG∽△BCE,∴,∴線段AG與BE之間的數(shù)量關(guān)系為AG=BE;(3)∵∠CEF=45°,點(diǎn)B、E、F三點(diǎn)共線,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴,設(shè)BC=CD=AD=a,則AC=a,則由得,∴AH=a,則DH=AD﹣AH=a,CH==a,∴由得,解得:a=3,即BC=3,故答案為3.【點(diǎn)睛】本題考查了正方形的性質(zhì)與判定,相似三角形的判定與性質(zhì)等,綜合性較強(qiáng),有一定的難度,正確添加輔助線,熟練掌握正方形的判定與性質(zhì)、相似三角形的判定與性質(zhì)是解題的關(guān)鍵.24、(1)①;(2)無(wú)變化,證明見(jiàn)解析;(3)①2+2+1或﹣1.【解析】
(1)①先判斷出DE∥CB,進(jìn)而得出比例式,代值即可得出結(jié)論;②先得出DE∥BC,即可得出,,再用比例的性質(zhì)即可得出結(jié)論;(2)先∠CAD=∠BAE,進(jìn)而判斷出△ADC∽△AEB即可得出結(jié)論;(3)分點(diǎn)D在BE的延長(zhǎng)線上和點(diǎn)D在BE上,先利用勾股定理求出BD,再借助(2)結(jié)論即可得出CD.【詳解】解:(1)①當(dāng)θ=0°時(shí),在Rt△ABC中,AC=BC=2,∴∠A=∠B=45°,AB=2,∵AD=DE=AB=,∴∠AED=∠A=45°,∴∠ADE=90°,∴DE∥CB,∴,∴,∴,故答案為,②當(dāng)θ=180°時(shí),如圖1,∵DE∥BC,∴,∴,即:,∴,故答案為;(2)當(dāng)0°≤θ<360°時(shí),的大小沒(méi)有變化,理由:∵∠CAB=∠DAE,∴∠CAD=∠BAE,∵,∴△ADC∽△AEB,∴;(3)①當(dāng)點(diǎn)E在BA的延長(zhǎng)線時(shí),BE最大,在Rt△ADE中,AE=AD=2,∴BE最大=AB+AE=2+2;②如圖2,當(dāng)點(diǎn)E在BD上時(shí),∵∠ADE=90°,∴∠ADB=90°,在Rt△ADB中,AB=2,AD=,根據(jù)勾股定理得,BD==,∴BE=BD+DE=+,由(2)知,,∴CD=+1,如圖3,當(dāng)點(diǎn)D在BE的延長(zhǎng)線上時(shí),在Rt△ADB中,AD=,AB=2,根據(jù)勾股定理得,BD==,∴BE=BD﹣DE
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年山東省濱州市中考英語(yǔ)試題含解析
- 四年級(jí)心理健康教案
- 山東省青島市膠州市2024-2025學(xué)年七年級(jí)上學(xué)期 第一次月考英語(yǔ)試卷(無(wú)答案)
- 2013-2020年全球PET瓶坯模具行業(yè)市場(chǎng)深度調(diào)查及戰(zhàn)略投資分析研究報(bào)告
- 2024至2030年中國(guó)異型車數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2010-2013年熱塑性彈性體市場(chǎng)運(yùn)行態(tài)勢(shì)及預(yù)測(cè)分析報(bào)告
- 2024至2030年中國(guó)帶玻璃夾板門行業(yè)投資前景及策略咨詢研究報(bào)告
- 2024至2030年中國(guó)寬幅門板生產(chǎn)線數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2024至2030年中國(guó)合金鋁片數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2024至2030年中國(guó)前排氣動(dòng)打磨機(jī)行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025屆【九省聯(lián)考】全國(guó)高三10月聯(lián)考數(shù)學(xué)試題
- 第1-4單元測(cè)試卷(單元測(cè)試)-2024-2025學(xué)年四年級(jí)上冊(cè)數(shù)學(xué)人教版
- GB/T 44489-2024高級(jí)輔助駕駛地圖審查要求
- 2024-2030年中國(guó)氫能源行業(yè)發(fā)展趨勢(shì)與項(xiàng)目投資專項(xiàng)調(diào)研報(bào)告
- T-CECS120-2021套接緊定式鋼導(dǎo)管施工及驗(yàn)收規(guī)程
- 人教版八年級(jí)上冊(cè)數(shù)學(xué)期中考試試題含答案詳解
- 2023--2024學(xué)年蘇少版七上綜合實(shí)踐教案
- 《嬰幼兒常見(jiàn)病識(shí)別與預(yù)防》課件-嬰幼兒濕疹
- 坦克介紹英語(yǔ)解讀
- 光伏發(fā)電項(xiàng)目投資合同三篇
- 大學(xué)體育理論(山東聯(lián)盟)智慧樹(shù)知到課后章節(jié)答案2023年下泰山學(xué)院
評(píng)論
0/150
提交評(píng)論