北京師范大朝陽附屬中學2024-2025學年初三第5次階段性考試數(shù)學試題含解析_第1頁
北京師范大朝陽附屬中學2024-2025學年初三第5次階段性考試數(shù)學試題含解析_第2頁
北京師范大朝陽附屬中學2024-2025學年初三第5次階段性考試數(shù)學試題含解析_第3頁
北京師范大朝陽附屬中學2024-2025學年初三第5次階段性考試數(shù)學試題含解析_第4頁
北京師范大朝陽附屬中學2024-2025學年初三第5次階段性考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京師范大朝陽附屬中學2024-2025學年初三第5次階段性考試數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列運算正確的是()A.3a2﹣2a2=1 B.a(chǎn)2?a3=a6 C.(a﹣b)2=a2﹣b2 D.(a+b)2=a2+2ab+b22.將一把直尺和一塊含30°和60°角的三角板ABC按如圖所示的位置放置,如果∠CDE=40°,那么∠BAF的大小為()A.10° B.15° C.20° D.25°3.下表是某校合唱團成員的年齡分布,對于不同的x,下列關于年齡的統(tǒng)計量不會發(fā)生改變的是()年齡/歲13141516頻數(shù)515x10-xA.平均數(shù)、中位數(shù) B.眾數(shù)、方差 C.平均數(shù)、方差 D.眾數(shù)、中位數(shù)4.《九章算術》是中國古代數(shù)學的重要著作,方程術是它的最高成就,其中記載:今有牛五、羊二,直金十兩;牛二、羊五,直金八兩。問:牛、羊各直金幾何?譯文:“假設有5頭牛、2只羊,值金10兩;2頭牛、5只羊,值金8兩。問:每頭牛、每只羊各值金多少兩?”設每頭牛值金x兩,每只羊值金y兩,則列方程組錯誤的是()A. B. C. D.5.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無法計算6.在平面直角坐標系xOy中,若點P(3,4)在⊙O內,則⊙O的半徑r的取值范圍是()A.0<r<3 B.r>4 C.0<r<5 D.r>57.向某一容器中注水,注滿為止,表示注水量與水深的函數(shù)關系的圖象大致如圖所示,則該容器可能是()A. B.C. D.8.如圖,已知矩形ABCD中,BC=2AB,點E在BC邊上,連接DE、AE,若EA平分∠BED,則的值為()A. B. C. D.9.如圖,一個斜坡長130m,坡頂離水平地面的距離為50m,那么這個斜坡的坡度為(

)A. B. C. D.10.如圖是測量一物體體積的過程:步驟一:將180mL的水裝進一個容量為300mL的杯子中;步驟二:將三個相同的玻璃球放入水中,結果水沒有滿;步驟三:再將一個同樣的玻璃球放入水中,結果水滿溢出.根據(jù)以上過程,推測一個玻璃球的體積在下列哪一范圍內?(1mL=1cm3)().A.10cm3以上,20cm3以下 B.20cm3以上,30cm3以下C.30cm3以上,40cm3以下 D.40cm3以上,50cm3以下二、填空題(共7小題,每小題3分,滿分21分)11.如圖,四邊形ABCD中,E,F(xiàn),G,H分別是邊AB、BC、CD、DA的中點.若四邊形EFGH為菱形,則對角線AC、BD應滿足條件_____.12.已知實數(shù)a、b、c滿足+|10﹣2c|=0,則代數(shù)式ab+bc的值為__.13.如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C均在格點上.(Ⅰ)AC的長等于_____;(Ⅱ)在線段AC上有一點D,滿足AB2=AD?AC,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點D,并簡要說明點D的位置是如何找到的(不要求證明)_____.14.如圖,P是⊙O的直徑AB延長線上一點,PC切⊙O于點C,PC=6,BC:AC=1:2,則AB的長為_____.15.拋物線y=(x﹣2)2﹣3的頂點坐標是____.16.如圖,在中國象棋的殘局上建立平面直角坐標系,如果“相”和“兵”的坐標分別是(3,-1)和(-3,1),那么“卒”的坐標為_____.

17.某招聘考試分筆試和面試兩種,其中筆試按60%、面試按40%計算加權平均數(shù),作為總成績.孔明筆試成績90分,面試成績85分,那么孔明的總成績是分.三、解答題(共7小題,滿分69分)18.(10分)如圖,小巷左石兩側是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離BC為0.7米,梯子頂端到地面的距離AC為2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,梯子頂端到地面的距離A′D為1.5米,求小巷有多寬.19.(5分)如圖,在平行四邊形ABCD中,過點A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點,且∠AFE=∠B求證:△ADF∽△DEC;若AB=8,AD=6,AF=4,求AE的長.20.(8分)某工廠計劃在規(guī)定時間內生產(chǎn)24000個零件,若每天比原計劃多生產(chǎn)30個零件,則在規(guī)定時間內可以多生產(chǎn)300個零件.求原計劃每天生產(chǎn)的零件個數(shù)和規(guī)定的天數(shù).為了提前完成生產(chǎn)任務,工廠在安排原有工人按原計劃正常生產(chǎn)的同時,引進5組機器人生產(chǎn)流水線共同參與零件生產(chǎn),已知每組機器人生產(chǎn)流水線每天生產(chǎn)零件的個數(shù)比20個工人原計劃每天生產(chǎn)的零件總數(shù)還多20%,按此測算,恰好提前兩天完成24000個零件的生產(chǎn)任務,求原計劃安排的工人人數(shù).21.(10分)(2016湖南省株洲市)某市對初二綜合素質測評中的審美與藝術進行考核,規(guī)定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分100分)兩部分組成,其中測試成績占80%,平時成績占20%,并且當綜合評價得分大于或等于80分時,該生綜合評價為A等.(1)孔明同學的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,則孔明同學測試成績和平時成績各得多少分?(2)某同學測試成績?yōu)?0分,他的綜合評價得分有可能達到A等嗎?為什么?(3)如果一個同學綜合評價要達到A等,他的測試成績至少要多少分?22.(10分)如圖,某校一幢教學大樓的頂部豎有一塊“傳承文明,啟智求真”的宣傳牌CD.小明在山坡的坡腳A處測得宣傳牌底部D的仰角為60°,沿山坡向上走到B處測得宣傳牌頂部C的仰角為45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求這塊宣傳牌CD的高度.(測角器的高度忽略不計,結果精確到0.1米.參考數(shù)據(jù):≈1.414,≈1.732)23.(12分)已知AC,EC分別為四邊形ABCD和EFCG的對角線,點E在△ABC內,∠CAE+∠CBE=1.(1)如圖①,當四邊形ABCD和EFCG均為正方形時,連接BF.i)求證:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的長;(2)如圖②,當四邊形ABCD和EFCG均為矩形,且時,若BE=1,AE=2,CE=3,求k的值;(3)如圖③,當四邊形ABCD和EFCG均為菱形,且∠DAB=∠GEF=45°時,設BE=m,AE=n,CE=p,試探究m,n,p三者之間滿足的等量關系.(直接寫出結果,不必寫出解答過程)24.(14分)2019年1月,溫州軌道交通線正式運營,線有以下4種購票方式:A.二維碼過閘B.現(xiàn)金購票C.市名卡過閘D.銀聯(lián)閃付某興趣小組為了解最受歡迎的購票方式,隨機調查了某區(qū)的若干居民,得到如圖所示的統(tǒng)計圖,已知選擇方式D的有200人,求選擇方式A的人數(shù).小博和小雅對A,B,C三種購票方式的喜愛程度相同,隨機選取一種方式購票,求他們選擇同一種購票方式的概率.(要求列表或畫樹狀圖).

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據(jù)合并同類項法則,可知3a2﹣2a2=a2,故不正確;根據(jù)同底數(shù)冪相乘,可知a2?a3=a5,故不正確;根據(jù)完全平方公式,可知(a﹣b)2=a2﹣2ab+b2,故不正確;根據(jù)完全平方公式,可知(a+b)2=a2+2ab+b2,正確.故選D.【詳解】請在此輸入詳解!2、A【解析】

先根據(jù)∠CDE=40°,得出∠CED=50°,再根據(jù)DE∥AF,即可得到∠CAF=50°,最后根據(jù)∠BAC=60°,即可得出∠BAF的大?。驹斀狻坑蓤D可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°?50°=10°,故選A.本題考查了平行線的性質,熟練掌握這一點是解題的關鍵.3、D【解析】

由表易得x+(10-x)=10,所以總人數(shù)不變,14歲的人最多,眾數(shù)不變,中位數(shù)也可以確定.【詳解】∵年齡為15歲和16歲的同學人數(shù)之和為:x+(10-x)=10,∴由表中數(shù)據(jù)可知人數(shù)最多的是年齡為14歲的,共有15人,合唱團總人數(shù)為30人,∴合唱團成員的年齡的中位數(shù)是14,眾數(shù)也是14,這兩個統(tǒng)計量不會隨著x的變化而變化.故選D.4、D【解析】

由5頭牛、2只羊,值金10兩可得:5x+2y=10,由2頭牛、5只羊,值金8兩可得2x+5y=8,則7頭牛、7只羊,值金18兩,據(jù)此可知7x+7y=18,據(jù)此可得答案.【詳解】解:設每頭牛值金x兩,每只羊值金y兩,

由5頭牛、2只羊,值金10兩可得:5x+2y=10,

由2頭牛、5只羊,值金8兩可得2x+5y=8,

則7頭牛、7只羊,值金18兩,據(jù)此可知7x+7y=18,

所以方程組錯誤,

故選:D.本題主要考查由實際問題抽象出二元一次方程組,解題的關鍵是理解題意找到相等關系及等式的基本性質.5、B【解析】

有旋轉的性質得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結論.【詳解】把△IBE繞B順時針旋轉90°,使BI與AB重合,E旋轉到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.本題考查了勾股定理,利用了旋轉的性質:旋轉前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關鍵.6、D【解析】

先利用勾股定理計算出OP=1,然后根據(jù)點與圓的位置關系的判定方法得到r的范圍.【詳解】∵點P的坐標為(3,4),∴OP1.∵點P(3,4)在⊙O內,∴OP<r,即r>1.故選D.本題考查了點與圓的位置關系:點的位置可以確定該點到圓心距離與半徑的關系,反過來已知點到圓心距離與半徑的關系可以確定該點與圓的位置關系.7、D【解析】

根據(jù)函數(shù)的圖象和所給出的圖形分別對每一項進行判斷即可.【詳解】由函數(shù)圖象知:隨高度h的增加,y也增加,但隨h變大,每單位高度的增加,注水量h的增加量變小,圖象上升趨勢變緩,其原因只能是水瓶平行于底面的截面的半徑由底到頂逐漸變小,故D項正確.故選:D.本題主要考查函數(shù)模型及其應用.8、C【解析】

過點A作AF⊥DE于F,根據(jù)角平分線上的點到角的兩邊距離相等可得AF=AB,利用全等三角形的判定和性質以及矩形的性質解答即可.【詳解】解:如圖,過點A作AF⊥DE于F,在矩形ABCD中,AB=CD,∵AE平分∠BED,∴AF=AB,∵BC=2AB,∴BC=2AF,∴∠ADF=30°,在△AFD與△DCE中∵∠C=∠AFD=90°,∠ADF=∠DEC,AF=DC,,∴△AFD≌△DCE(AAS),∴△CDE的面積=△AFD的面積=∵矩形ABCD的面積=AB?BC=2AB2,∴2△ABE的面積=矩形ABCD的面積﹣2△CDE的面積=(2﹣)AB2,∴△ABE的面積=,∴,故選:C.本題考查了矩形的性質,角平分線上的點到角的兩邊距離相等的性質,以及全等三角形的判定與性質,關鍵是根據(jù)角平分線上的點到角的兩邊距離相等可得AF=AB.9、A【解析】試題解析:∵一個斜坡長130m,坡頂離水平地面的距離為50m,∴這個斜坡的水平距離為:=10m,∴這個斜坡的坡度為:50:10=5:1.故選A.點睛:本題考查解直角三角形的應用-坡度坡角問題,解題的關鍵是明確坡度的定義.坡度是坡面的鉛直高度h和水平寬度l的比,又叫做坡比,它是一個比值,反映了斜坡的陡峭程度,一般用i表示,常寫成i=1:m的形式.10、C【解析】分析:本題可設玻璃球的體積為x,再根據(jù)題意列出不等式組求得解集得出答案即可.詳解:設玻璃球的體積為x,則有解得30<x<1.故一顆玻璃球的體積在30cm3以上,1cm3以下.故選C.點睛:此題考查一元一次不等式組的運用,解此類題目常常要根據(jù)題意列出不等式組,再化簡計算得出x的取值范圍.二、填空題(共7小題,每小題3分,滿分21分)11、AC=BD.【解析】試題分析:添加的條件應為:AC=BD,把AC=BD作為已知條件,根據(jù)三角形的中位線定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根據(jù)等量代換和平行于同一條直線的兩直線平行,得到HG和EF平行且相等,所以EFGH為平行四邊形,又EH等于BD的一半且AC=BD,所以得到所證四邊形的鄰邊EH與HG相等,所以四邊形EFGH為菱形.試題解析:添加的條件應為:AC=BD.證明:∵E,F(xiàn),G,H分別是邊AB、BC、CD、DA的中點,∴在△ADC中,HG為△ADC的中位線,所以HG∥AC且HG=AC;同理EF∥AC且EF=AC,同理可得EH=BD,則HG∥EF且HG=EF,∴四邊形EFGH為平行四邊形,又AC=BD,所以EF=EH,∴四邊形EFGH為菱形.考點:1.菱形的性質;2.三角形中位線定理.12、-1【解析】試題分析:根據(jù)非負數(shù)的性質可得:,解得:,則ab+bc=(-11)×6+6×5=-66+30=-1.13、5見解析.【解析】

(1)由勾股定理即可求解;(2)尋找格點M和N,構建與△ABC全等的△AMN,易證MN⊥AC,從而得到MN與AC的交點即為所求D點.【詳解】(1)AC=;(2)如圖,連接格點M和N,由圖可知:AB=AM=4,BC=AN=,AC=MN=,∴△ABC≌△MAN,∴∠AMN=∠BAC,∴∠MAD+∠CAB=∠MAD+∠AMN=90°,∴MN⊥AC,易解得△MAN以MN為底時的高為,∵AB2=AD?AC,∴AD=AB2÷AC=,綜上可知,MN與AC的交點即為所求D點.本題考查了平面直角坐標系中定點的問題,理解第2問中構造全等三角形從而確定D點的思路.14、1【解析】PC切⊙O于點C,則∠PCB=∠A,∠P=∠P,

∴△PCB∽△PAC,∴,∵BP=PC=3,

∴PC2=PB?PA,即36=3?PA,

∵PA=12

∴AB=12-3=1.故答案是:1.15、(2,﹣3)【解析】

根據(jù):對于拋物線y=a(x﹣h)2+k的頂點坐標是(h,k).【詳解】拋物線y=(x﹣2)2﹣3的頂點坐標是(2,﹣3).故答案為(2,﹣3)本題考核知識點:拋物線的頂點.解題關鍵點:熟記求拋物線頂點坐標的公式.16、(-2,-2)【解析】

先根據(jù)“相”和“兵”的坐標確定原點位置,然后建立坐標系,進而可得“卒”的坐標.【詳解】“卒”的坐標為(﹣2,﹣2),故答案是:(﹣2,﹣2).考查了坐標確定位置,關鍵是正確確定原點位置.17、88【解析】試題分析:根據(jù)筆試和面試所占的百分比以及筆試成績和面試成績,列出算式,進行計算即可:∵筆試按60%、面試按40%計算,∴總成績是:90×60%+85×40%=88(分).三、解答題(共7小題,滿分69分)18、2.7米.【解析】

先根據(jù)勾股定理求出AB的長,同理可得出BD的長,進而可得出結論.【詳解】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.2米,∴AB2=0.72+2.22=6.1.在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B′2,∴BD2+1.52=6.1,∴BD2=2.∵BD>0,∴BD=2米.∴CD=BC+BD=0.7+2=2.7米.答:小巷的寬度CD為2.7米.本題考查的是勾股定理的應用,在應用勾股定理解決實際問題時勾股定理與方程的結合是解決實際問題常用的方法,關鍵是從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.領會數(shù)形結合的思想的應用.19、(1)見解析(2)6【解析】

(1)利用對應兩角相等,證明兩個三角形相似△ADF∽△DEC.(2)利用△ADF∽△DEC,可以求出線段DE的長度;然后在在Rt△ADE中,利用勾股定理求出線段AE的長度.【詳解】解:(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AD∥BC∴∠C+∠B=110°,∠ADF=∠DEC∵∠AFD+∠AFE=110°,∠AFE=∠B,∴∠AFD=∠C在△ADF與△DEC中,∵∠AFD=∠C,∠ADF=∠DEC,∴△ADF∽△DEC(2)∵四邊形ABCD是平行四邊形,∴CD=AB=1.由(1)知△ADF∽△DEC,∴,∴在Rt△ADE中,由勾股定理得:20、(1)2400個,10天;(2)1人.【解析】

(1)設原計劃每天生產(chǎn)零件x個,根據(jù)相等關系“原計劃生產(chǎn)24000個零件所用時間=實際生產(chǎn)(24000+300)個零件所用的時間”可列方程,解出x即為原計劃每天生產(chǎn)的零件個數(shù),再代入即可求得規(guī)定天數(shù);(2)設原計劃安排的工人人數(shù)為y人,根據(jù)“(5組機器人生產(chǎn)流水線每天生產(chǎn)的零件個數(shù)+原計劃每天生產(chǎn)的零件個數(shù))×(規(guī)定天數(shù)-2)=零件總數(shù)24000個”可列方程[5×20×(1+20%)×+2400]×(10-2)=24000,解得y的值即為原計劃安排的工人人數(shù).【詳解】解:(1)解:設原計劃每天生產(chǎn)零件x個,由題意得,,解得x=2400,經(jīng)檢驗,x=2400是原方程的根,且符合題意.∴規(guī)定的天數(shù)為24000÷2400=10(天).答:原計劃每天生產(chǎn)零件2400個,規(guī)定的天數(shù)是10天.(2)設原計劃安排的工人人數(shù)為y人,由題意得,[5×20×(1+20%)×+2400]×(10-2)=24000,解得,y=1.經(jīng)檢驗,y=1是原方程的根,且符合題意.答:原計劃安排的工人人數(shù)為1人.本題考查分式方程的應用,找準等量關系是本題的解題關鍵,注意分式方程結果要檢驗.21、(1)孔明同學測試成績位90分,平時成績?yōu)?5分;(2)不可能;(3)他的測試成績應該至少為1分.【解析】試題分析:(1)分別利用孔明同學的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,分別得出等式求出答案;(2)利用測試成績占80%,平時成績占20%,進而得出答案;(3)首先假設平時成績?yōu)闈M分,進而得出不等式,求出測試成績的最小值.試題解析:(1)設孔明同學測試成績?yōu)閤分,平時成績?yōu)閥分,依題意得:,解之得:.答:孔明同學測試成績位90分,平時成績?yōu)?5分;(2)由題意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.(3)設平時成績?yōu)闈M分,即100分,綜合成績?yōu)?00×20%=20,設測試成績?yōu)閍分,根據(jù)題意可得:20+80%a≥80,解得:a≥1.答:他的測試成績應該至少為1分.考點:一元一次不等式的應用;二元一次方程組的應用.22、2.7米【解析】解:作BF⊥DE于點F,BG⊥AE于點G在Rt△ADE中∵tan∠ADE=,∴DE="AE"·tan∠ADE=15∵山坡AB的坡度i=1:,AB=10∴BG=5,AG=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論