版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
北京市順義第九中學(xué)2025屆高三下學(xué)期5月質(zhì)量檢查數(shù)學(xué)試題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.從集合中隨機(jī)選取一個(gè)數(shù)記為,從集合中隨機(jī)選取一個(gè)數(shù)記為,則在方程表示雙曲線(xiàn)的條件下,方程表示焦點(diǎn)在軸上的雙曲線(xiàn)的概率為()A. B. C. D.2.若函數(shù)在處取得極值2,則()A.-3 B.3 C.-2 D.23.如圖所示,為了測(cè)量、兩座島嶼間的距離,小船從初始位置出發(fā),已知在的北偏西的方向上,在的北偏東的方向上,現(xiàn)在船往東開(kāi)2百海里到達(dá)處,此時(shí)測(cè)得在的北偏西的方向上,再開(kāi)回處,由向西開(kāi)百海里到達(dá)處,測(cè)得在的北偏東的方向上,則、兩座島嶼間的距離為()A.3 B. C.4 D.4.觀察下列各式:,,,,,,,,根據(jù)以上規(guī)律,則()A. B. C. D.5.已知,,,是球的球面上四個(gè)不同的點(diǎn),若,且平面平面,則球的表面積為()A. B. C. D.6.設(shè),則,則()A. B. C. D.7.已知函數(shù),,且,則()A.3 B.3或7 C.5 D.5或88.使得的展開(kāi)式中含有常數(shù)項(xiàng)的最小的n為()A. B. C. D.9.已知實(shí)數(shù)、滿(mǎn)足不等式組,則的最大值為()A. B. C. D.10.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件11.設(shè)復(fù)數(shù)滿(mǎn)足,則()A.1 B.-1 C. D.12.如圖所示的莖葉圖為高三某班名學(xué)生的化學(xué)考試成績(jī),算法框圖中輸入的,,,,為莖葉圖中的學(xué)生成績(jī),則輸出的,分別是()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的定義域?yàn)開(kāi)_____.14.已知雙曲線(xiàn)的兩條漸近線(xiàn)方程為,若頂點(diǎn)到漸近線(xiàn)的距離為1,則雙曲線(xiàn)方程為.15.若正三棱柱的所有棱長(zhǎng)均為2,點(diǎn)為側(cè)棱上任意一點(diǎn),則四棱錐的體積為_(kāi)_________.16.若向量滿(mǎn)足,則實(shí)數(shù)的取值范圍是____________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在三棱錐中,是邊長(zhǎng)為的正三角形,平面平面,,M、N分別為、的中點(diǎn).?(1)證明:;(2)求三棱錐的體積.18.(12分)的內(nèi)角,,的對(duì)邊分別為,,,其面積記為,滿(mǎn)足.(1)求;(2)若,求的值.19.(12分)已知橢圓:的四個(gè)頂點(diǎn)圍成的四邊形的面積為,原點(diǎn)到直線(xiàn)的距離為.(1)求橢圓的方程;(2)已知定點(diǎn),是否存在過(guò)的直線(xiàn),使與橢圓交于,兩點(diǎn),且以為直徑的圓過(guò)橢圓的左頂點(diǎn)?若存在,求出的方程:若不存在,請(qǐng)說(shuō)明理由.20.(12分)如圖,在平行四邊形中,,,現(xiàn)沿對(duì)角線(xiàn)將折起,使點(diǎn)A到達(dá)點(diǎn)P,點(diǎn)M,N分別在直線(xiàn),上,且A,B,M,N四點(diǎn)共面.(1)求證:;(2)若平面平面,二面角平面角大小為,求直線(xiàn)與平面所成角的正弦值.21.(12分)a,b,c分別為△ABC內(nèi)角A,B,C的對(duì)邊.已知a=3,,且B=60°.(1)求△ABC的面積;(2)若D,E是BC邊上的三等分點(diǎn),求.22.(10分)已知函數(shù)(1)求函數(shù)的單調(diào)遞增區(qū)間(2)記函數(shù)的圖象為曲線(xiàn),設(shè)點(diǎn)是曲線(xiàn)上不同兩點(diǎn),如果在曲線(xiàn)上存在點(diǎn),使得①;②曲線(xiàn)在點(diǎn)M處的切線(xiàn)平行于直線(xiàn)AB,則稱(chēng)函數(shù)存在“中值和諧切線(xiàn)”,當(dāng)時(shí),函數(shù)是否存在“中值和諧切線(xiàn)”請(qǐng)說(shuō)明理由
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
設(shè)事件A為“方程表示雙曲線(xiàn)”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線(xiàn)”,分別計(jì)算出,再利用公式計(jì)算即可.【詳解】設(shè)事件A為“方程表示雙曲線(xiàn)”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線(xiàn)”,由題意,,,則所求的概率為.故選:A.本題考查利用定義計(jì)算條件概率的問(wèn)題,涉及到雙曲線(xiàn)的定義,是一道容易題.2.A【解析】
對(duì)函數(shù)求導(dǎo),可得,即可求出,進(jìn)而可求出答案.【詳解】因?yàn)?所以,則,解得,則.故選:A.本題考查了函數(shù)的導(dǎo)數(shù)與極值,考查了學(xué)生的運(yùn)算求解能力,屬于基礎(chǔ)題.3.B【解析】
先根據(jù)角度分析出的大小,然后根據(jù)角度關(guān)系得到的長(zhǎng)度,再根據(jù)正弦定理計(jì)算出的長(zhǎng)度,最后利用余弦定理求解出的長(zhǎng)度即可.【詳解】由題意可知:,所以,,所以,所以,又因?yàn)?,所以,所?故選:B.本題考查解三角形中的角度問(wèn)題,難度一般.理解方向角的概念以及活用正、余弦定理是解答問(wèn)題的關(guān)鍵.4.B【解析】
每個(gè)式子的值依次構(gòu)成一個(gè)數(shù)列,然后歸納出數(shù)列的遞推關(guān)系后再計(jì)算.【詳解】以及數(shù)列的應(yīng)用根據(jù)題設(shè)條件,設(shè)數(shù)字,,,,,,,構(gòu)成一個(gè)數(shù)列,可得數(shù)列滿(mǎn)足,則,,.故選:B.本題主要考查歸納推理,解題關(guān)鍵是通過(guò)數(shù)列的項(xiàng)歸納出遞推關(guān)系,從而可確定數(shù)列的一些項(xiàng).5.A【解析】
由題意畫(huà)出圖形,求出多面體外接球的半徑,代入表面積公式得答案.【詳解】如圖,取BC中點(diǎn)G,連接AG,DG,則,,分別取與的外心E,F(xiàn),分別過(guò)E,F(xiàn)作平面ABC與平面DBC的垂線(xiàn),相交于O,則O為四面體的球心,由,得正方形OEGF的邊長(zhǎng)為,則,四面體的外接球的半徑,球O的表面積為.故選A.本題考查多面體外接球表面積的求法,考查空間想象能力與思維能力,是中檔題.6.A【解析】
根據(jù)換底公式可得,再化簡(jiǎn),比較的大小,即得答案.【詳解】,,.,顯然.,即,,即.綜上,.故選:.本題考查換底公式和對(duì)數(shù)的運(yùn)算,屬于中檔題.7.B【解析】
根據(jù)函數(shù)的對(duì)稱(chēng)軸以及函數(shù)值,可得結(jié)果.【詳解】函數(shù),若,則的圖象關(guān)于對(duì)稱(chēng),又,所以或,所以的值是7或3.故選:B.本題考查的是三角函數(shù)的概念及性質(zhì)和函數(shù)的對(duì)稱(chēng)性問(wèn)題,屬基礎(chǔ)題8.B【解析】二項(xiàng)式展開(kāi)式的通項(xiàng)公式為,若展開(kāi)式中有常數(shù)項(xiàng),則,解得,當(dāng)r取2時(shí),n的最小值為5,故選B【考點(diǎn)定位】本題考查二項(xiàng)式定理的應(yīng)用.9.A【解析】
畫(huà)出不等式組所表示的平面區(qū)域,結(jié)合圖形確定目標(biāo)函數(shù)的最優(yōu)解,代入即可求解,得到答案.【詳解】畫(huà)出不等式組所表示平面區(qū)域,如圖所示,由目標(biāo)函數(shù),化為直線(xiàn),當(dāng)直線(xiàn)過(guò)點(diǎn)A時(shí),此時(shí)直線(xiàn)在y軸上的截距最大,目標(biāo)函數(shù)取得最大值,又由,解得,所以目標(biāo)函數(shù)的最大值為,故選A.本題主要考查簡(jiǎn)單線(xiàn)性規(guī)劃求解目標(biāo)函數(shù)的最值問(wèn)題.其中解答中正確畫(huà)出不等式組表示的可行域,利用“一畫(huà)、二移、三求”,確定目標(biāo)函數(shù)的最優(yōu)解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,及推理與計(jì)算能力,屬于基礎(chǔ)題.10.B【解析】
根據(jù)誘導(dǎo)公式化簡(jiǎn)再分析即可.【詳解】因?yàn)?所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B本題考查充分與必要條件的判定以及誘導(dǎo)公式的運(yùn)用,屬于基礎(chǔ)題.11.B【解析】
利用復(fù)數(shù)的四則運(yùn)算即可求解.【詳解】由.故選:B本題考查了復(fù)數(shù)的四則運(yùn)算,需掌握復(fù)數(shù)的運(yùn)算法則,屬于基礎(chǔ)題.12.B【解析】
試題分析:由程序框圖可知,框圖統(tǒng)計(jì)的是成績(jī)不小于80和成績(jī)不小于60且小于80的人數(shù),由莖葉圖可知,成績(jī)不小于80的有12個(gè),成績(jī)不小于60且小于80的有26個(gè),故,.考點(diǎn):程序框圖、莖葉圖.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
對(duì)數(shù)函數(shù)的定義域需滿(mǎn)足真數(shù)大于0,再由指數(shù)型不等式求解出解集即可.【詳解】對(duì)函數(shù)有意義,即.故答案為:本題考查求對(duì)數(shù)函數(shù)的定義域,還考查了指數(shù)型不等式求解,屬于基礎(chǔ)題.14.【解析】由已知,即,取雙曲線(xiàn)頂點(diǎn)及漸近線(xiàn),則頂點(diǎn)到該漸近線(xiàn)的距離為,由題可知,所以,則所求雙曲線(xiàn)方程為.15.【解析】
依題意得,再求點(diǎn)到平面的距離為點(diǎn)到直線(xiàn)的距離,用公式所以即可得出答案.【詳解】解:正三棱柱的所有棱長(zhǎng)均為2,則,點(diǎn)到平面的距離為點(diǎn)到直線(xiàn)的距離所以,所以.故答案為:本題考查椎體的體積公式,考查運(yùn)算能力,是基礎(chǔ)題.16.【解析】
根據(jù)題意計(jì)算,解得答案.【詳解】,故,解得.故答案為:.本題考查了向量的數(shù)量積,意在考查學(xué)生的計(jì)算能力.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)證明見(jiàn)解析;(2).【解析】
(1)取中點(diǎn),連接,,證明平面,由線(xiàn)面垂直的性質(zhì)可得;(2)由,即可求得三棱錐的體積.【詳解】解:(1)證明:取中點(diǎn)D,連接,.因?yàn)?,,所以且,因?yàn)椋矫?,平面,所以平?又平面,所以;(2)解:因?yàn)槠矫?,平面,所以平面平面,過(guò)N作于E,則平面,因?yàn)槠矫嫫矫?,,平面平面,平面,所以平面,又因?yàn)槠矫?,所以,由于,所以所以,所?本題考查線(xiàn)面垂直,考查三棱錐體積的計(jì)算,解題的關(guān)鍵是掌握線(xiàn)面垂直的判定與性質(zhì),屬于中檔題.18.(1);(2)【解析】
(1)根據(jù)三角形面積公式及平面向量數(shù)量積定義代入公式,即可求得,進(jìn)而求得的值;(2)根據(jù)正弦定理將邊化為角,結(jié)合(1)中的值,即可將表達(dá)式化為的三角函數(shù)式;結(jié)合正弦和角公式與輔助角公式化簡(jiǎn),即可求得和,進(jìn)而由正弦定理確定,代入整式即可求解.【詳解】(1)因?yàn)?,所以由三角形面積公式及平面向量數(shù)量積運(yùn)算可得,所以.因?yàn)?,所?(2)因?yàn)?,所以由正弦定理代入化?jiǎn)可得,由(1),代入可得,展開(kāi)化簡(jiǎn)可得,根據(jù)輔助角公式化簡(jiǎn)可得.因?yàn)?,所以,所以,所以為等腰三角形,且,所?本題考查了正弦定理在解三角形中的應(yīng)用,三角形面積公式的應(yīng)用,平面向量數(shù)量積的運(yùn)算,正弦和角公式及輔助角公式的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.19.(1);(2)存在,且方程為或.【解析】
(1)依題意列出關(guān)于a,b,c的方程組,求得a,b,進(jìn)而可得到橢圓方程;(2)聯(lián)立直線(xiàn)和橢圓得到,要使以為直徑的圓過(guò)橢圓的左頂點(diǎn),則,結(jié)合韋達(dá)定理可得到參數(shù)值.【詳解】(1)直線(xiàn)的一般方程為.依題意,解得,故橢圓的方程式為.(2)假若存在這樣的直線(xiàn),當(dāng)斜率不存在時(shí),以為直徑的圓顯然不經(jīng)過(guò)橢圓的左頂點(diǎn),所以可設(shè)直線(xiàn)的斜率為,則直線(xiàn)的方程為.由,得.由,得.記,的坐標(biāo)分別為,,則,,而.要使以為直徑的圓過(guò)橢圓的左頂點(diǎn),則,即,所以,整理解得或,所以存在過(guò)的直線(xiàn),使與橢圓交于,兩點(diǎn),且以為直徑的圓過(guò)橢圓的左頂點(diǎn),直線(xiàn)的方程為或.本題主要考查直線(xiàn)與圓錐曲線(xiàn)位置關(guān)系,所使用方法為韋達(dá)定理法:因直線(xiàn)的方程是一次的,圓錐曲線(xiàn)的方程是二次的,故直線(xiàn)與圓錐曲線(xiàn)的問(wèn)題常轉(zhuǎn)化為方程組關(guān)系問(wèn)題,最終轉(zhuǎn)化為一元二次方程問(wèn)題,故用韋達(dá)定理及判別式是解決圓錐曲線(xiàn)問(wèn)題的重點(diǎn)方法之一,尤其是弦中點(diǎn)問(wèn)題,弦長(zhǎng)問(wèn)題,可用韋達(dá)定理直接解決,但應(yīng)注意不要忽視判別式的作用.20.(1)證明見(jiàn)解析;(2)【解析】
(1)根據(jù)余弦定理,可得,利用//,可得//平面,然后利用線(xiàn)面平行的性質(zhì)定理,//,最后可得結(jié)果.(2)根據(jù)二面角平面角大小為,可知N為的中點(diǎn),然后利用建系,計(jì)算以及平面的一個(gè)法向量,利用向量的夾角公式,可得結(jié)果.【詳解】(1)不妨設(shè),則,在中,,則,因?yàn)?,所以,因?yàn)?/,且A、B、M、N四點(diǎn)共面,所以//平面.又平面平面,所以//.而,.(2)因?yàn)槠矫嫫矫?,且,所以平面,,因?yàn)?,所以平面,,因?yàn)?,平面與平面夾角為,所以,在中,易知N為的中點(diǎn),如圖,建立空間直角坐標(biāo)系,則,,,,,,,,設(shè)平面的一個(gè)法向量為,則由,令,得.設(shè)與平面所成角為,則.本題考查線(xiàn)面平行的性質(zhì)定理以及線(xiàn)面角,熟練掌握利用建系的方法解決幾何問(wèn)題,將幾何問(wèn)題代數(shù)化,化繁為簡(jiǎn),屬中檔題.21.(1);(2)【解析】
(1)根據(jù)正弦定理,可得△ABC為直角三角形,然后可計(jì)算b,可得結(jié)果.(2)計(jì)算,然后根據(jù)余弦定理,可得,利用平方關(guān)系,可得結(jié)果.【詳解】(1)△ABC中,由csinC=asinA+bsinB,利用正弦定理得c2=a2+b2,所以△ABC是直角三角形.又a=3,B=60°,所以;所以△ABC的面積為.(2)設(shè)D靠近點(diǎn)B,則BD=DE=EC=1.,所以所以.本題考查正弦定理的應(yīng)用,屬基礎(chǔ)題.22.(1)見(jiàn)解析(2)不存在,見(jiàn)解析【解析】
(1)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論的范圍求出函數(shù)的單調(diào)區(qū)間即可;(2)求出函數(shù)的導(dǎo)數(shù),結(jié)合
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度肥料委托加工與農(nóng)業(yè)可持續(xù)發(fā)展合作協(xié)議3篇
- 二零二五年度荒地資源綜合利用承包協(xié)議書(shū)3篇
- 二零二五年度綠色建筑節(jié)能技術(shù)合作協(xié)議3篇
- 2024石子市場(chǎng)拓展與購(gòu)銷(xiāo)合作框架協(xié)議9篇
- 二零二五年度離婚協(xié)議中財(cái)產(chǎn)分割及子女撫養(yǎng)及贍養(yǎng)費(fèi)支付及共同債務(wù)處理及財(cái)產(chǎn)增值及子女教育費(fèi)用支付及子女婚嫁費(fèi)用支付及子女創(chuàng)業(yè)資助支付及子女就業(yè)支持支付標(biāo)準(zhǔn)參考模板3篇
- 二零二五年度環(huán)保設(shè)備生產(chǎn)線(xiàn)股權(quán)轉(zhuǎn)讓合作協(xié)議3篇
- 2025年度快遞企業(yè)快遞駕駛員勞動(dòng)合同及福利待遇協(xié)議3篇
- 二零二五年度班組施工勞務(wù)裝配式建筑合作協(xié)議3篇
- 2024版建筑勞務(wù)分包項(xiàng)目預(yù)算協(xié)議
- 二零二五年度網(wǎng)絡(luò)安全應(yīng)急響應(yīng)與培訓(xùn)合同2篇
- 2025年度商用廚房油煙機(jī)安裝與維護(hù)服務(wù)合同范本3篇
- 2024年03月恒豐銀行2024年春季招考畢業(yè)生筆試歷年參考題庫(kù)附帶答案詳解
- 網(wǎng)絡(luò)安全系統(tǒng)運(yùn)維方案
- ISO 56001-2024《創(chuàng)新管理體系-要求》專(zhuān)業(yè)解讀與應(yīng)用實(shí)踐指導(dǎo)材料之14:“6策劃-6.3變更的策劃”(雷澤佳編制-2025B0)
- 2024年特厚板行業(yè)現(xiàn)狀分析:中國(guó)特厚板市場(chǎng)占總銷(xiāo)售量45.01%
- 2025年中國(guó)地質(zhì)調(diào)查局烏魯木齊自然資源綜合調(diào)查中心招聘19人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 中國(guó)兒童重癥監(jiān)護(hù)病房鎮(zhèn)痛和鎮(zhèn)靜治療專(zhuān)家共識(shí)2024解讀
- 音樂(lè)老師年度總結(jié)5篇
- 2024年專(zhuān)用:物業(yè)安全管理協(xié)議3篇
- 2024版商標(biāo)許可使用合同與商標(biāo)授權(quán)協(xié)議3篇
- 學(xué)生學(xué)情分析報(bào)告范文
評(píng)論
0/150
提交評(píng)論