版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
河南省新密市重點達標名校2024-2025學年初三下學期單元檢測試題數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖是一個幾何體的三視圖,則這個幾何體是()A. B. C. D.2.下列各式:①a0=1②a2·a3=a5③2–2=–④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正確的是()A.①②③ B.①③⑤ C.②③④ D.②④⑤3.一、單選題點P(2,﹣1)關(guān)于原點對稱的點P′的坐標是()A.(﹣2,1) B.(﹣2,﹣1) C.(﹣1,2) D.(1,﹣2)4.在△ABC中,若=0,則∠C的度數(shù)是()A.45° B.60° C.75° D.105°5.下列四個式子中,正確的是()A.=±9 B.﹣=6 C.()2=5 D.=46.如圖,在網(wǎng)格中,小正方形的邊長均為1,點A,B,C都在格點上,則∠ABC的正切值是()A. B.2 C. D.7.在同一直角坐標系中,二次函數(shù)y=x2與反比例函數(shù)y=1x(x>0)的圖象如圖所示,若兩個函數(shù)圖象上有三個不同的點A(x1,m),B(x2,m),C(x3,m),其中m為常數(shù),令ω=x1+x2+x3A.1B.mC.m2D.18.如圖,數(shù)軸上有A,B,C,D四個點,其中絕對值最小的數(shù)對應(yīng)的點是()A.點A B.點B C.點C D.點D9.世界因愛而美好,在今年我校的“獻愛心”捐款活動中,九年級三班50名學生積極加獻愛心捐款活動,班長將捐款情況進行了統(tǒng)計,并繪制成了統(tǒng)計圖,根據(jù)圖中提供的信息,捐款金額的眾數(shù)和中位數(shù)分別是A.20、20 B.30、20 C.30、30 D.20、3010.下列幾何體是棱錐的是()A. B. C. D.11.下列計算正確的是()A.﹣2x﹣2y3?2x3y=﹣4x﹣6y3 B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy12.若=1,則符合條件的m有()A.1個 B.2個 C.3個 D.4個二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,邊長為的正方形紙片剪出一個邊長為m的正方形之后,剩余部分可剪拼成一個矩形,若拼成的矩形一邊長為4,則另一邊長為14.如圖,在正方形ABCD中,BC=2,E、F分別為射線BC,CD上兩個動點,且滿足BE=CF,設(shè)AE,BF交于點G,連接DG,則DG的最小值為_______.15.如圖,在平面直角坐標系中,點A(0,6),點B在x軸的負半軸上,將線段AB繞點A逆時針旋轉(zhuǎn)90°至AB',點M是線段AB'的中點,若反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點B'、M,則k=_____.16.計算(5ab3)2的結(jié)果等于_____.17.一個布袋中裝有1個藍色球和2個紅色球,這些球除顏色外其余都相同,隨機摸出一個球后放回搖勻,再隨機摸出一個球,則兩次摸出的球都是紅球的概率是_____.18.早春二月的某一天,大連市南部地區(qū)的平均氣溫為﹣3℃,北部地區(qū)的平均氣溫為﹣6℃,則當天南部地區(qū)比北部地區(qū)的平均氣溫高_____℃.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)化簡:20.(6分)如圖,已知△ABC,分別以AB,AC為直角邊,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,連結(jié)BD,CE交于點F,設(shè)AB=m,BC=n.(1)求證:∠BDA=∠ECA.(2)若m=,n=3,∠ABC=75°,求BD的長.(3)當∠ABC=____時,BD最大,最大值為____(用含m,n的代數(shù)式表示)(4)試探究線段BF,AE,EF三者之間的數(shù)量關(guān)系。21.(6分)已知:如圖,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足為點D,E是BD的中點,聯(lián)結(jié)AE并延長,交邊BC于點F.(1)求∠EAD的余切值;(2)求的值.22.(8分)先化簡再求值:,其中,.23.(8分)如圖,在△ABC中,AD=15,AC=12,DC=9,點B是CD延長線上一點,連接AB,若AB=1.求:△ABD的面積.24.(10分)如圖所示,一幢樓房AB背后有一臺階CD,臺階每層高0.2米,且AC=17.2米,設(shè)太陽光線與水平地面的夾角為α,當α=60°時,測得樓房在地面上的影長AE=10米,現(xiàn)有一老人坐在MN這層臺階上曬太陽.(取1.73)(1)求樓房的高度約為多少米?(2)過了一會兒,當α=45°時,問老人能否還曬到太陽?請說明理由.25.(10分)如圖,AB是半圓O的直徑,過點O作弦AD的垂線交半圓O于點E,交AC于點C,使∠BED=∠C.(1)判斷直線AC與圓O的位置關(guān)系,并證明你的結(jié)論;(2)若AC=8,cos∠BED=4526.(12分)某射擊隊教練為了了解隊員訓練情況,從隊員中選取甲、乙兩名隊員進行射擊測試,相同條件下各射靶5次,成績統(tǒng)計如下:命中環(huán)數(shù)678910甲命中相應(yīng)環(huán)數(shù)的次數(shù)01310乙命中相應(yīng)環(huán)數(shù)的次數(shù)20021(1)根據(jù)上述信息可知:甲命中環(huán)數(shù)的中位數(shù)是_____環(huán),乙命中環(huán)數(shù)的眾數(shù)是______環(huán);
(2)試通過計算說明甲、乙兩人的成績誰比較穩(wěn)定?
(3)如果乙再射擊1次,命中8環(huán),那么乙射擊成績的方差會變小.(填“變大”、“變小”或“不變”)27.(12分)如圖,某地方政府決定在相距50km的A、B兩站之間的公路旁E點,修建一個土特產(chǎn)加工基地,且使C、D兩村到E點的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E應(yīng)建在離A站多少千米的地方?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題分析:結(jié)合三個視圖發(fā)現(xiàn),應(yīng)該是由一個正方體在一個角上挖去一個小正方體,且小正方體的位置應(yīng)該在右上角,故選B.考點:由三視圖判斷幾何體.2、D【解析】
根據(jù)實數(shù)的運算法則即可一一判斷求解.【詳解】①有理數(shù)的0次冪,當a=0時,a0=0;②為同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加,正確;③中2–2=,原式錯誤;④為有理數(shù)的混合運算,正確;⑤為合并同類項,正確.故選D.3、A【解析】
根據(jù)“關(guān)于原點對稱的點,橫坐標與縱坐標都互為相反數(shù)”解答.【詳解】解:點P(2,-1)關(guān)于原點對稱的點的坐標是(-2,1).故選A.本題考查了關(guān)于原點對稱的點的坐標,解決本題的關(guān)鍵是掌握好對稱點的坐標規(guī)律:關(guān)于原點對稱的點,橫坐標與縱坐標都互為相反數(shù).4、C【解析】
根據(jù)非負數(shù)的性質(zhì)可得出cosA及tanB的值,繼而可得出A和B的度數(shù),根據(jù)三角形的內(nèi)角和定理可得出∠C的度數(shù).【詳解】由題意,得
cosA=,tanB=1,
∴∠A=60°,∠B=45°,
∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
故選C.5、D【解析】
A、表示81的算術(shù)平方根;B、先算-6的平方,然后再求?的值;C、利用完全平方公式計算即可;D、=.【詳解】A、=9,故A錯誤;B、-=?=-6,故B錯誤;C、()2=2+2+3=5+2,故C錯誤;D、==4,故D正確.故選D.本題主要考查的是實數(shù)的運算,掌握算術(shù)平方根、平方根和二次根式的性質(zhì)以及完全平方公式是解題的關(guān)鍵.6、A【解析】分析:連接AC,根據(jù)勾股定理求出AC、BC、AB的長,根據(jù)勾股定理的逆定理得到△ABC是直角三角形,根據(jù)正切的定義計算即可.詳解:連接AC,
由網(wǎng)格特點和勾股定理可知,
AC=,AC2+AB2=10,BC2=10,
∴AC2+AB2=BC2,
∴△ABC是直角三角形,
∴tan∠ABC=.點睛:考查的是銳角三角函數(shù)的定義、勾股定理及其逆定理的應(yīng)用,熟記銳角三角函數(shù)的定義、掌握如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形是解題的關(guān)鍵.7、D【解析】
本題主要考察二次函數(shù)與反比例函數(shù)的圖像和性質(zhì).【詳解】令二次函數(shù)中y=m.即x2=m,解得x=m或x=-m.令反比例函數(shù)中y=m,即1x=m,解得x=1m,將x的三個值相加得到ω=m+(-m)+巧妙借助三點縱坐標相同的條件建立起兩個函數(shù)之間的聯(lián)系,從而解答.8、B【解析】試題分析:在數(shù)軸上,離原點越近則說明這個點所表示的數(shù)的絕對值越小,根據(jù)數(shù)軸可知本題中點B所表示的數(shù)的絕對值最?。蔬xB.9、C【解析】分析:由表提供的信息可知,一組數(shù)據(jù)的眾數(shù)是這組數(shù)中出現(xiàn)次數(shù)最多的數(shù),而中位數(shù)則是將這組數(shù)據(jù)從小到大(或從大到小)依次排列時,處在最中間位置的數(shù),據(jù)此可知這組數(shù)據(jù)的眾數(shù),中位數(shù).詳解:根據(jù)右圖提供的信息,捐款金額的眾數(shù)和中位數(shù)分別是30,30.故選C.點睛:考查眾數(shù)和中位數(shù)的概念,熟記概念是解題的關(guān)鍵.10、D【解析】分析:根據(jù)棱錐的概念判斷即可.A是三棱柱,錯誤;B是圓柱,錯誤;C是圓錐,錯誤;D是四棱錐,正確.故選D.點睛:本題考查了立體圖形的識別,關(guān)鍵是根據(jù)棱錐的概念判斷.11、D【解析】
A.根據(jù)同底數(shù)冪乘法法則判斷;B.根據(jù)積的乘方法則判斷即可;C.根據(jù)平方差公式計算并判斷;D.根據(jù)同底數(shù)冪除法法則判斷.【詳解】A.-2x-2y32x3y=-4xy4,故本選項錯誤;B.
(?2a2)3=?8a6,故本項錯誤;C.
(2a+1)(2a?1)=4a2?1,故本項錯誤;D.35x3y2÷5x2y=7xy,故本選項正確.故答案選D.本題考查了同底數(shù)冪的乘除法法則、積的乘方法則與平方差公式,解題的關(guān)鍵是熟練的掌握同底數(shù)冪的乘除法法則、積的乘方法則與平方差公式.12、C【解析】
根據(jù)有理數(shù)的乘方及解一元二次方程-直接開平方法得出兩個有關(guān)m的等式,即可得出.【詳解】=1m2-9=0或m-2=1即m=3或m=3,m=1m有3個值故答案選C.本題考查的知識點是有理數(shù)的乘方及解一元二次方程-直接開平方法,解題的關(guān)鍵是熟練的掌握有理數(shù)的乘方及解一元二次方程-直接開平方法.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
因為大正方形邊長為,小正方形邊長為m,所以剩余的兩個直角梯形的上底為m,下底為,所以矩形的另一邊為梯形上、下底的和:+m=.14、﹣1【解析】
先由圖形確定:當O、G、D共線時,DG最?。桓鶕?jù)正方形的性質(zhì)證明△ABE≌△BCF(SAS),可得∠AGB=90°,利用勾股定理可得OD的長,從而得DG的最小值.【詳解】在正方形ABCD中,AB=BC,∠ABC=∠BCD,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∵∠CBF+∠ABF=90°∴∠BAE+∠ABF=90°∴∠AGB=90°∴點G在以AB為直徑的圓上,由圖形可知:當O、G、D在同一直線上時,DG有最小值,如圖所示:∵正方形ABCD,BC=2,∴AO=1=OG∴OD=,∴DG=?1,故答案為?1.本題考查了正方形的性質(zhì)與全等三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握正方形的性質(zhì)與全等三角形的判定與性質(zhì).15、12【解析】
根據(jù)題意可以求得點B'的橫坐標,然后根據(jù)反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點B'、M,從而可以求得k的值.【詳解】解:作B′C⊥y軸于點C,如圖所示,∵∠BAB′=90°,∠AOB=90°,AB=AB′,∴∠BAO+∠ABO=90°,∠BAO+∠B′AC=90°,∴∠ABO=∠BA′C,∴△ABO≌△BA′C,∴AO=B′C,∵點A(0,6),∴B′C=6,設(shè)點B′的坐標為(6,),∵點M是線段AB'的中點,點A(0,6),∴點M的坐標為(3,),∵反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過點M,∴=,解得,k=12,故答案為:12.本題考查反比例函數(shù)圖象上點的坐標特征、旋轉(zhuǎn)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答.16、25a2b1.【解析】
代數(shù)式內(nèi)每項因式均平方即可.【詳解】解:原式=25a2b1.本題考查了代數(shù)式的乘方.17、【解析】
首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次摸出的球都是紅球的情況,再利用概率公式即可求出答案.【詳解】畫樹狀圖得:∵共有9種等可能的結(jié)果,兩次摸出的球都是紅球的由4種情況,∴兩次摸出的球都是紅球的概率是,故答案為.本題主要考查了求隨機事件概率的方法,解本題的要點在于根據(jù)題意畫出樹狀圖,從而求出答案.18、3【解析】
用南部氣溫減北部的氣溫,根據(jù)“減去一個數(shù)等于加上這個數(shù)的相反數(shù)”求出它們的差就是高出的溫度.【詳解】解:(﹣3)﹣(﹣6)=﹣3+6=3℃.答:當天南部地區(qū)比北部地區(qū)的平均氣溫高3℃,故答案為:3.本題考查了有理數(shù)的減法運算法則,減法運算法則:減去一個數(shù)等于加上這個數(shù)的相反數(shù).三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、x+2【解析】
先把括號里的分式通分,化簡,再計算除法.【詳解】解:原式==x+2此題重點考察學生對分式的化簡的應(yīng)用,掌握通分和約分是解題的關(guān)鍵.20、135°m+n【解析】試題分析:(1)由已知條件證△ABD≌△AEC,即可得到∠BDA=∠CEA;(2)過點E作EG⊥CB交CB的延長線于點G,由已知條件易得∠EBG=60°,BE=2,這樣在Rt△BEG中可得EG=,BG=1,結(jié)合BC=n=3,可得GC=4,由長可得EC=,結(jié)合△ABD≌△AEC可得BD=EC=;(3)由(2)可知,BE=,BC=n,因此當E、B、C三點共線時,EC最大=BE+BC=,此時BD最大=EC最大=;(4)由△ABD≌△AEC可得∠AEC=∠ABD,結(jié)合△ABE是等腰直角三角形可得△EFB是直角三角形及BE2=2AE2,從而可得EF2=BE2-BF2=2AE2-BF2.試題解析:(1)∵△ABE和△ACD都是等腰直角三角形,且∠EAB=∠DAC=90°,∴AE=AB,AC=AD,∠EAB+∠BAC=∠BAC+∠DAC,即∠EAC=∠BAD,∴△EAC≌△BAD,∴∠BDA=∠ECA;(2)如下圖,過點E作EG⊥CB交CB的延長線于點G,∴∠EGB=90°,∵在等腰直角△ABE,∠BAE=90°,AB=m=,∴∠ABE=45°,BE=2,∵∠ABC=75°,∴∠EBG=180°-75°-45°=60°,∴BG=1,EG=,∴GC=BG+BC=4,∴CE=,∵△EAC≌△BAD,∴BD=EC=;(3)由(2)可知,BE=,BC=n,因此當E、B、C三點共線時,EC最大=BE+BC=,∵BD=EC,∴BD最大=EC最大=,此時∠ABC=180°-∠ABE=180°-45°=135°,即當∠ABC=135°時,BD最大=;(4)∵△ABD≌△AEC,∴∠AEC=∠ABD,∵在等腰直角△ABE中,∠AEC+∠CEB+∠ABE=90°,∴∠ABD+∠ABE+∠CEB=90°,∴∠BFE=180°-90°=90°,∴EF2+BF2=BE2,又∵在等腰Rt△ABE中,BE2=2AE2,∴2AE2=EF2+BF2.點睛:(1)解本題第2小題的關(guān)鍵是過點E作EG⊥CB的延長線于點G,即可由已知條件求得BE的長,進一步求得BG和EG的長就可在Rt△EGC中求得EC的長了,結(jié)合(1)中所證的全等三角形即可得到BD的長了;(2)解第3小題時,由題意易知,當AB和BC的值確定后,BE的值就確定了,則由題意易得當E、B、C三點共線時,EC=EB+BC=是EC的最大值了.21、(1)∠EAD的余切值為;(2)=.【解析】
(1)在Rt△ADB中,根據(jù)AB=13,cos∠BAC=,求出AD的長,由勾股定理求出BD的長,進而可求出DE的長,然后根據(jù)余切的定義求∠EAD的余切即可;(2)過D作DG∥AF交BC于G,由平行線分線段成比例定理可得CD:AD=CG:FG=3:5,從而可設(shè)CD=3x,AD=5x,再由EF∥DG,BE=ED,可知BF=FG=5x,然后可求BF:CF的值.【詳解】(1)∵BD⊥AC,∴∠ADE=90°,Rt△ADB中,AB=13,cos∠BAC=,∴AD=5,由勾股定理得:BD=12,∵E是BD的中點,∴ED=6,∴∠EAD的余切==;(2)過D作DG∥AF交BC于G,∵AC=8,AD=5,∴CD=3,∵DG∥AF,∴=,設(shè)CD=3x,AD=5x,∵EF∥DG,BE=ED,∴BF=FG=5x,∴==.本題考查了勾股定理,銳角三角函數(shù)的定義,平行線分線段成比例定理.解(1)的關(guān)鍵是熟練掌握銳角三角函數(shù)的概念,解(2)的關(guān)鍵是熟練掌握平行線分線段成比例定理.22、8【解析】
原式第一項利用完全平方公式展開,第二項利用單項式乘以多項式法則計算,合并得到最簡結(jié)果,將x與y的值代入計算即可求出值.【詳解】原式==,當,時,原式=本題考查了整式的混合運算-化簡求值,涉及的知識有:完全平方公式、單項式乘以多項式、去括號法則以及合并同類項法則,熟練掌握公式及法則是解本題的關(guān)鍵.23、2.【解析】試題分析:由勾股定理的逆定理證明△ADC是直角三角形,∠C=90°,再由勾股定理求出BC,得出BD,即可得出結(jié)果.解:在△ADC中,AD=15,AC=12,DC=9,AC2+DC2=122+92=152=AD2,即AC2+DC2=AD2,∴△ADC是直角三角形,∠C=90°,在Rt△ABC中,BC===16,∴BD=BC﹣DC=16﹣9=7,∴△ABD的面積=×7×12=2.24、(1)樓房的高度約為17.3米;(2)當α=45°時,老人仍可以曬到太陽.理由見解析.【解析】試題分析:(1)在Rt△ABE中,根據(jù)的正切值即可求得樓高;(2)當時,從點B射下的光線與地面AD的交點為F,與MC的交點為點H.可求得AF=AB=17.3米,又因CF=CH=17.3-17.2=0.1米,CM=0.2,所以大樓的影子落在臺階MC這個側(cè)面上.即小貓仍可曬到太陽.試題解析:解:(1)當當時,在Rt△ABE中,∵,∴BA=10tan60°=米.即樓房的高度約為17.3米.當時,小貓仍可曬到太陽.理由如下:假設(shè)沒有臺階,當時,從點B射下的光線與地面AD的交點為F,與MC的交點為點H.∵∠BFA=45°,∴,此時的影長AF=BA=17.3米,所以CF=AF-AC=17.3-17.2=0.1.∴CH=CF=0.1米,∴大樓的影子落在臺階MC這個側(cè)面上.∴小貓仍可曬到太陽.考點:解直角三角形.25、(1)AC與⊙O相切,證明參見解析;(2).【解析】試題分析:(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,從而有∠C+∠AOC=90°,再利用三角形內(nèi)角和定理,可求∠OAC=90°,即AC是⊙O的切線;(2)連接BD,AB是直徑,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cos∠BED=,利用三角函數(shù)值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cos∠BED=,同樣利用三角函數(shù)值,可求AD.試題解析:(1)AC與⊙O相切.∵弧BD是∠BED與∠BAD所對的弧,∴∠BAD=∠BED,∵OC⊥AD,∴∠AOC+∠BAD=90°,∴∠BED+∠AOC=90°,即∠C+∠AOC=90°,∴∠OAC=90°,∴AB⊥AC,即AC與⊙O相切;(2)連接BD.∵AB是⊙O直徑,∴∠ADB=90°,在Rt△AOC中,∠CAO=90°,∵AC=8,∠ADB=90°,cos∠C=cos∠BED=,∴AO=6,∴AB=12,在Rt△ABD中,∵cos∠OAD=cos∠BED=,∴AD=AB?cos∠OAD=1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版房地產(chǎn)反擔保抵押合同附件十3篇
- 二零二五年度綠色物流鋼材運輸服務(wù)合同2篇
- 二零二五年度車輛租賃與車輛銷售服務(wù)合同2篇
- 二零二五年度高端商務(wù)汽車租賃服務(wù)合同協(xié)議2篇
- 二零二五版冷鏈物流訂餐服務(wù)合同范本與質(zhì)量保證2篇
- 二零二五年擔保合同范本修訂要點與執(zhí)行建議6篇
- 二零二五版房產(chǎn)抵押投資合作合同范本3篇
- 二零二五版物流運輸企業(yè)勞動合同范本與司機權(quán)益保障服務(wù)合同3篇
- 二零二五年度房地產(chǎn)經(jīng)紀服務(wù)合同補充協(xié)議2篇
- 二零二五版12333職業(yè)培訓補貼政策合同3篇
- 上海紐約大學自主招生面試試題綜合素質(zhì)答案技巧
- 辦公家具項目實施方案、供貨方案
- 2022年物流服務(wù)師職業(yè)技能競賽理論題庫(含答案)
- ?;钒踩僮饕?guī)程
- 連鎖遺傳和遺傳作圖
- DB63∕T 1885-2020 青海省城鎮(zhèn)老舊小區(qū)綜合改造技術(shù)規(guī)程
- 高邊坡施工危險源辨識及分析
- 中海地產(chǎn)設(shè)計管理程序
- 簡譜視唱15942
- 《城鎮(zhèn)燃氣設(shè)施運行、維護和搶修安全技術(shù)規(guī)程》(CJJ51-2006)
- 項目付款審核流程(visio流程圖)
評論
0/150
提交評論