版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
湖北省孝感市孝昌縣2025屆初三第六次月考試卷(數(shù)學(xué)試題文)試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,在△ABC中,∠C=90°,M是AB的中點,動點P從點A出發(fā),沿AC方向勻速運動到終點C,動點Q從點C出發(fā),沿CB方向勻速運動到終點B.已知P,Q兩點同時出發(fā),并同時到達(dá)終點.連結(jié)MP,MQ,PQ.在整個運動過程中,△MPQ的面積大小變化情況是()A.一直增大 B.一直減小 C.先減小后增大 D.先增大后減小2.如圖,矩形ABCD內(nèi)接于⊙O,點P是上一點,連接PB、PC,若AD=2AB,則cos∠BPC的值為()A. B. C. D.3.的絕對值是()A. B. C. D.4.已知點A(0,﹣4),B(8,0)和C(a,﹣a),若過點C的圓的圓心是線段AB的中點,則這個圓的半徑的最小值是()A. B. C. D.25.隨著生活水平的提高,小林家購置了私家車,這樣他乘坐私家車上學(xué)比乘坐公交車上學(xué)所需的時間少用了15分鐘,現(xiàn)已知小林家距學(xué)校8千米,乘私家車平均速度是乘公交車平均速度的2.5倍,若設(shè)乘公交車平均每小時走x千米,根據(jù)題意可列方程為()A. B. C. D.6.在一些美術(shù)字中,有的漢字是軸對稱圖形.下面4個漢字中,可以看作是軸對稱圖形的是()A. B. C. D.7.甲、乙兩船從相距300km的A、B兩地同時出發(fā)相向而行,甲船從A地順流航行180km時與從B地逆流航行的乙船相遇,水流的速度為6km/h,若甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為()A.= B.=C.= D.=8.不等式5+2x<1的解集在數(shù)軸上表示正確的是().A. B. C. D.9.下列長度的三條線段能組成三角形的是A.2,3,5 B.7,4,2C.3,4,8 D.3,3,410.如圖,E,B,F(xiàn),C四點在一條直線上,EB=CF,∠A=∠D,再添一個條件仍不能證明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE11.某機構(gòu)調(diào)查顯示,深圳市20萬初中生中,沉迷于手機上網(wǎng)的初中生約有16000人,則這部分沉迷于手機上網(wǎng)的初中生數(shù)量,用科學(xué)記數(shù)法可表示為()A.1.6×104人 B.1.6×105人 C.0.16×105人 D.16×103人12.已知拋物線y=x2+(2a+1)x+a2﹣a,則拋物線的頂點不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,以長為18的線段AB為直徑的⊙O交△ABC的邊BC于點D,點E在AC上,直線DE與⊙O相切于點D.已知∠CDE=20°,則的長為_____.14.如圖,以點O為圓心的兩個圓中,大圓的弦AB切小圓于點C,OA交小圓于點D,若OD=2,tan∠OAB=,則AB的長是________.15.計算:(﹣2a3)2=_____.16.已知△ABC∽△DEF,若△ABC與△DEF的相似比為,則△ABC與△DEF對應(yīng)中線的比為_____.17.已知二次函數(shù)的圖象如圖所示,有下列結(jié)論:,,;,,其中正確的結(jié)論序號是______18.化簡的結(jié)果為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)甲、乙、丙、丁四位同學(xué)進行乒乓球單打比賽,要從中選出兩位同學(xué)打第一場比賽.若確定甲打第一場,再從其余三位同學(xué)中隨機選取一位,恰好選中乙同學(xué)的概率是.若隨機抽取兩位同學(xué),請用畫樹狀圖法或列表法,求恰好選中甲、乙兩位同學(xué)的概率.20.(6分)全面兩孩政策實施后,甲,乙兩個家庭有了各自的規(guī)劃.假定生男生女的概率相同,回答下列問題:甲家庭已有一個男孩,準(zhǔn)備再生一個孩子,則第二個孩子是女孩的概率是;乙家庭沒有孩子,準(zhǔn)備生兩個孩子,求至少有一個孩子是女孩的概率.21.(6分)在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)的頂點、的坐標(biāo)分別為,.請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;請作出關(guān)于軸對稱的;點的坐標(biāo)為.的面積為.22.(8分)計算:1223.(8分)如圖,AB是⊙O的直徑,CD切⊙O于點D,且BD∥OC,連接AC.(1)求證:AC是⊙O的切線;(2)若AB=OC=4,求圖中陰影部分的面積(結(jié)果保留根號和π)24.(10分)某書店老板去圖書批發(fā)市場購買某種圖書,第一次用1200元購書若干本,并按該書定價7元出售,很快售完.由于該書暢銷,第二次購書時,每本書的批發(fā)價已比第一次提高了20%,他用1500元所購該書的數(shù)量比第一次多10本,當(dāng)按定價售出200本時,出現(xiàn)滯銷,便以定價的4折售完剩余的書.(1)第一次購書的進價是多少元?(2)試問該老板這兩次售書總體上是賠錢了,還是賺錢了(不考慮其他因素)?若賠錢,賠多少;若賺錢,賺多少?25.(10分)如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點A,C,E在同一直線上.求坡底C點到大樓距離AC的值;求斜坡CD的長度.26.(12分)在直角坐標(biāo)系中,過原點O及點A(8,0),C(0,6)作矩形OABC、連結(jié)OB,點D為OB的中點,點E是線段AB上的動點,連結(jié)DE,作DF⊥DE,交OA于點F,連結(jié)EF.已知點E從A點出發(fā),以每秒1個單位長度的速度在線段AB上移動,設(shè)移動時間為t秒.如圖1,當(dāng)t=3時,求DF的長.如圖2,當(dāng)點E在線段AB上移動的過程中,∠DEF的大小是否發(fā)生變化?如果變化,請說明理由;如果不變,請求出tan∠DEF的值.連結(jié)AD,當(dāng)AD將△DEF分成的兩部分的面積之比為1:2時,求相應(yīng)的t的值.27.(12分)如圖所示,平行四邊形形ABCD中,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).(1)求證:四邊形BEDF是平行四邊形;(2)請?zhí)砑右粋€條件使四邊形BEDF為菱形.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】如圖所示,連接CM,∵M是AB的中點,∴S△ACM=S△BCM=S△ABC,開始時,S△MPQ=S△ACM=S△ABC;由于P,Q兩點同時出發(fā),并同時到達(dá)終點,從而點P到達(dá)AC的中點時,點Q也到達(dá)BC的中點,此時,S△MPQ=S△ABC;結(jié)束時,S△MPQ=S△BCM=S△ABC.△MPQ的面積大小變化情況是:先減小后增大.故選C.2、A【解析】
連接BD,根據(jù)圓周角定理可得cos∠BDC=cos∠BPC,又BD為直徑,則∠BCD=90°,設(shè)DC為x,則BC為2x,根據(jù)勾股定理可得BD=x,再根據(jù)cos∠BDC===,即可得出結(jié)論.【詳解】連接BD,∵四邊形ABCD為矩形,∴BD過圓心O,∵∠BDC=∠BPC(圓周角定理)∴cos∠BDC=cos∠BPC∵BD為直徑,∴∠BCD=90°,∵=,∴設(shè)DC為x,則BC為2x,∴BD===x,∴cos∠BDC===,∵cos∠BDC=cos∠BPC,∴cos∠BPC=.故答案選A.本題考查了圓周角定理與勾股定理,解題的關(guān)鍵是熟練的掌握圓周角定理與勾股定理的應(yīng)用.3、C【解析】
根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義即可解決.【詳解】在數(shù)軸上,點到原點的距離是,所以,的絕對值是,故選C.錯因分析
容易題,失分原因:未掌握絕對值的概念.4、B【解析】
首先求得AB的中點D的坐標(biāo),然后求得經(jīng)過點D且垂直于直線y=-x的直線的解析式,然后求得與y=-x的交點坐標(biāo),再求得交點與D之間的距離即可.【詳解】AB的中點D的坐標(biāo)是(4,-2),∵C(a,-a)在一次函數(shù)y=-x上,∴設(shè)過D且與直線y=-x垂直的直線的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,則函數(shù)解析式是y=x-1.根據(jù)題意得:,解得:,則交點的坐標(biāo)是(3,-3).則這個圓的半徑的最小值是:=.
故選:B本題考查了待定系數(shù)法求函數(shù)的解析式,以及兩直線垂直的條件,正確理解C(a,-a),一定在直線y=-x上,是關(guān)鍵.5、D【解析】分析:根據(jù)乘私家車平均速度是乘公交車平均速度的2.5倍,乘坐私家車上學(xué)比乘坐公交車上學(xué)所需的時間少用了15分鐘,利用時間得出等式方程即可.詳解:設(shè)乘公交車平均每小時走x千米,根據(jù)題意可列方程為:.故選D.點睛:此題主要考查了由實際問題抽象出分式方程,解題關(guān)鍵是正確找出題目中的相等關(guān)系,用代數(shù)式表示出相等關(guān)系中的各個部分,列出方程即可.6、A【解析】
根據(jù)軸對稱圖形的概念判斷即可.【詳解】A、是軸對稱圖形;B、不是軸對稱圖形;C、不是軸對稱圖形;D、不是軸對稱圖形.故選:A.本題考查的是軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.7、A【解析】分析:直接利用兩船的行駛距離除以速度=時間,得出等式求出答案.詳解:設(shè)甲、乙兩船在靜水中的速度均為xkm/h,則求兩船在靜水中的速度可列方程為:=.故選A.點睛:此題主要考查了由實際問題抽象出分式方程,正確表示出行駛的時間和速度是解題關(guān)鍵.8、C【解析】
先解不等式得到x<-1,根據(jù)數(shù)軸表示數(shù)的方法得到解集在-1的左邊.【詳解】5+1x<1,移項得1x<-4,系數(shù)化為1得x<-1.故選C.本題考查了在數(shù)軸上表示不等式的解集:先求出不等式組的解集,然后根據(jù)數(shù)軸表示數(shù)的方法把對應(yīng)的未知數(shù)的取值范圍通過畫區(qū)間的方法表示出來,等號時用實心,不等時用空心.9、D【解析】試題解析:A.∵3+2=5,∴2,3,5不能組成三角形,故A錯誤;B.∵4+2<7,∴7,4,2不能組成三角形,故B錯誤;C.∵4+3<8,∴3,4,8不能組成三角形,故C錯誤;D.∵3+3>4,∴3,3,4能組成三角形,故D正確;故選D.10、A【解析】
由EB=CF,可得出EF=BC,又有∠A=∠D,本題具備了一組邊、一組角對應(yīng)相等,為了再添一個條件仍不能證明△ABC≌△DEF,那么添加的條件與原來的條件可形成SSA,就不能證明△ABC≌△DEF了.【詳解】∵EB=CF,∴EB+BF=CF+BF,即EF=BC,又∵∠A=∠D,A、添加DE=AB與原條件滿足SSA,不能證明△ABC≌△DEF,故A選項正確.B、添加DF∥AC,可得∠DFE=∠ACB,根據(jù)AAS能證明△ABC≌△DEF,故B選項錯誤.C、添加∠E=∠ABC,根據(jù)AAS能證明△ABC≌△DEF,故C選項錯誤.D、添加AB∥DE,可得∠E=∠ABC,根據(jù)AAS能證明△ABC≌△DEF,故D選項錯誤,故選A.本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.11、A【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>10時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】用科學(xué)記數(shù)法表示16000,應(yīng)記作1.6×104,故選A.此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.12、D【解析】
求得頂點坐標(biāo),得出頂點的橫坐標(biāo)和縱坐標(biāo)的關(guān)系式,即可求得.【詳解】拋物線y=x2+(2a+1)x+a2﹣a的頂點的橫坐標(biāo)為:x=﹣=﹣a﹣,縱坐標(biāo)為:y==﹣2a﹣,∴拋物線的頂點橫坐標(biāo)和縱坐標(biāo)的關(guān)系式為:y=2x+,∴拋物線的頂點經(jīng)過一二三象限,不經(jīng)過第四象限,故選:D.本題考查了二次函數(shù)的性質(zhì),得到頂點的橫縱坐標(biāo)的關(guān)系式是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、7π【解析】
連接OD,由切線的性質(zhì)和已知條件可求出∠AOD的度數(shù),再根據(jù)弧長公式即可求出的長.【詳解】連接OD,∵直線DE與⊙O相切于點D,∴∠EDO=90°,∵∠CDE=20°,∴∠ODB=180°-90°-20°=70°,∵OD=OB,∴∠ODB=∠OBD=70°,∴∠AOD=140°,∴的長==7π,故答案為:7π.本題考查了切線的性質(zhì)、等腰三角形的判斷和性質(zhì)以及弧長公式的運用,求出∠AOD的度數(shù)是解題的關(guān)鍵.14、8【解析】
如圖,連接OC,在在Rt△ACO中,由tan∠OAB=,求出AC即可解決問題.【詳解】解:如圖,連接OC.∵AB是⊙O切線,∴OC⊥AB,AC=BC,在Rt△ACO中,∵∠ACO=90°,OC=OD=2tan∠OAB=,∴,∴AC=4,∴AB=2AC=8,故答案為8本題考查切線的性質(zhì)、垂徑定理、勾股定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形,屬于中考常考題型.15、4a1.【解析】
根據(jù)積的乘方運算法則進行運算即可.【詳解】原式故答案為考查積的乘方,掌握運算法則是解題的關(guān)鍵.16、3:4【解析】由于相似三角形的相似比等于對應(yīng)中線的比,∴△ABC與△DEF對應(yīng)中線的比為3:4故答案為3:4.17、【解析】
由拋物線的開口方向判斷a的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.【詳解】由圖象可知:拋物線開口方向向下,則,對稱軸直線位于y軸右側(cè),則a、b異號,即,拋物線與y軸交于正半軸,則,,故正確;對稱軸為,,故正確;由拋物線的對稱性知,拋物線與x軸的另一個交點坐標(biāo)為,所以當(dāng)時,,即,故正確;拋物線與x軸有兩個不同的交點,則,所以,故錯誤;當(dāng)時,,故正確.故答案為.本題考查了考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,二次函數(shù)系數(shù)符號由拋物線開口方向、對稱軸和拋物線與y軸的交點、拋物線與x軸交點的個數(shù)確定.18、+1【解析】
利用積的乘方得到原式=[(﹣1)(+1)]2017?(+1),然后利用平方差公式計算.【詳解】原式=[(﹣1)(+1)]2017?(+1)=(2﹣1)2017?(+1)=+1.故答案為:+1.本題考查了二次根式的混合運算,在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當(dāng)?shù)慕忸}途徑,往往能事半功倍.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)13;(2)【解析】
1)由題意可得共有乙、丙、丁三位同學(xué),恰好選中乙同學(xué)的只有一種情況,則可利用概率公式求解即可求得答案;
(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與恰好選中甲、乙兩位同學(xué)的情況,再利用概率公式求解即可求得答案.【詳解】解:(1)∵甲、乙、丙、丁四位同學(xué)進行一次乒乓球單打比賽,確定甲打第一場,再從其余的三位同學(xué)中隨機選取一位,∴恰好選到丙的概率是:13(2)畫樹狀圖得:∵共有12種等可能的結(jié)果,恰好選中甲、乙兩人的有2種情況,∴恰好選中甲、乙兩人的概率為:2此題考查的是用列表法或樹狀圖法求概率.注意樹狀圖與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數(shù)與總情況數(shù)之比.20、(1);(2)【解析】
(1)根據(jù)可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后確定至少有一個女孩的可能性,然后可求概率.【詳解】解:(1)(1)第二個孩子是女孩的概率=;故答案為;(2)畫樹狀圖為:
共有4種等可能的結(jié)果數(shù),其中至少有一個孩子是女孩的結(jié)果數(shù)為3,
所以至少有一個孩子是女孩的概率=.本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.21、(1)見解析;(2)見解析;(3);(4)4.【解析】
(1)根據(jù)C點坐標(biāo)確定原點位置,然后作出坐標(biāo)系即可;(2)首先確定A、B、C三點關(guān)于y軸對稱的點的位置,再連接即可;(3)根據(jù)點在坐標(biāo)系中的位置寫出其坐標(biāo)即可(4)利用長方形的面積剪去周圍多余三角形的面積即可.【詳解】解:(1)如圖所示:(2)如圖所示:(3)結(jié)合圖形可得:;(4).此題主要考查了作圖??軸對稱變換,關(guān)鍵是確定組成圖形的關(guān)鍵點的對稱點位置.22、-1【解析】
先化簡二次根式、計算負(fù)整數(shù)指數(shù)冪、分母有理化、去絕對值符號,再合并同類二次根式即可得.【詳解】原式=1﹣4﹣+1﹣=﹣1.本題考查了實數(shù)的混合運算,熟練掌握二次根式的性質(zhì)、分母有理化、負(fù)整數(shù)指數(shù)冪的意義、絕對值的意義是解答本題的關(guān)鍵.23、(1)證明見解析;(2);【解析】
(1)連接OD,先根據(jù)切線的性質(zhì)得到∠CDO=90°,再根據(jù)平行線的性質(zhì)得到∠AOC=∠OBD,∠COD=∠ODB,又因為OB=OD,所以∠OBD=∠ODB,即∠AOC=∠COD,再根據(jù)全等三角形的判定與性質(zhì)得到∠CAO=∠CDO=90°,根據(jù)切線的判定即可得證;(2)因為AB=OC=4,OB=OD,Rt△ODC與Rt△OAC是含30°的直角三角形,從而得到∠DOB=60°,即△BOD為等邊三角形,再用扇形的面積減去△BOD的面積即可.【詳解】(1)證明:連接OD,∵CD與圓O相切,∴OD⊥CD,∴∠CDO=90°,∵BD∥OC,∴∠AOC=∠OBD,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠AOC=∠COD,在△AOC和△DOC中,,∴△AOC≌△EOC(SAS),∴∠CAO=∠CDO=90°,則AC與圓O相切;(2)∵AB=OC=4,OB=OD,∴Rt△ODC與Rt△OAC是含30°的直角三角形,∴∠DOC=∠COA=60°,∴∠DOB=60°,∴△BOD為等邊三角形,圖中陰影部分的面積=扇形DOB的面積﹣△DOB的面積,=.本題主要考查切線的判定與性質(zhì),全等三角形的判定與性質(zhì),含30°角的直角三角形的性質(zhì),扇形的面積公式等,難度中等,屬于綜合題,解此題的關(guān)鍵在于熟練掌握其知識點.24、賺了520元【解析】
(1)設(shè)第一次購書的單價為x元,根據(jù)第一次用1200元購書若干本,第二次購書時,每本書的批發(fā)價已比第一次提高了20%,他用1500元所購該書的數(shù)量比第一次多10本,列出方程,求出x的值即可得出答案;(2)根據(jù)(1)先求出第一次和第二次購書數(shù)目,再根據(jù)賣書數(shù)目×(實際售價﹣當(dāng)次進價)求出二次賺的錢數(shù),再分別相加即可得出答案.【詳解】(1)設(shè)第一次購書的單價為x元,根據(jù)題意得:+10=,解得:x=5,經(jīng)檢驗,x=5是原方程的解,答:第一次購書的進價是5元;(2)第一次購書為1200÷5=240(本),第二次購書為240+10=250(本),第一次賺錢為240×(7﹣5)=480(元),第二次賺錢為200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元),所以兩次共賺錢480+40=520(元),答:該老板兩次售書總體上是賺錢了,共賺了520元.此題考查了分式方程的應(yīng)用,掌握這次活動的流程,分析題意,找到關(guān)鍵描述語,找到合適的等量關(guān)系是解決問題的關(guān)鍵.25、(1)坡底C點到大樓距離AC的值為20米;(2)斜坡CD的長度為80-120米.【解析】分析:(1)在直角三角形ABC中,利用銳角三角函數(shù)定義求出AC的長即可;(2)過點D作DF⊥AB于點F,則四邊形AEDF為矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.詳解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,則AC=(米)答:坡底C點到大樓距離AC的值是20米.(2)過點D作DF⊥AB于點F,則四邊形AEDF為矩形,∴AF=DE,DF=AE.設(shè)CD=x米,在Rt△CDE中,DE=x米,CE=x米在Rt△BDF中,∠BDF=45°,∴BF=DF=AB-AF=60-x(米)∵DF=AE=AC+CE,∴20+x=60-x解得:x=80-120(米)故斜坡CD的長度為(80-120)米.點睛:此題考查了解直角三角形-仰角俯角問題,坡度坡角問題,熟練掌握勾股定理是解本題的關(guān)鍵.26、(1)3;(2)∠DEF的大小不變,tan∠DEF=;(3)或.【解析】
(1)當(dāng)t=3時,點E為AB的中點,∵A(8,0),C(0,6),∴OA=8,OC=6,∵點D為OB的中點,∴DE∥OA,DE=OA=4,∵四邊形OABC是矩形,∴OA⊥AB,∴DE⊥AB,∴∠OAB=∠DEA=90°,又∵DF⊥DE,∴∠EDF=90°,∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 砼路面澆筑施工方案
- 點風(fēng)景石施工方案
- 江蘇葡萄溫室施工方案
- 2025版寵物狗領(lǐng)養(yǎng)合同(寵物醫(yī)療及康復(fù)一體化服務(wù))3篇
- 區(qū)塊鏈在經(jīng)濟數(shù)字化中的應(yīng)用研究-深度研究
- 2025年度個人商鋪門面租賃合同(含物業(yè)費減免政策)4篇
- 個人合同擔(dān)保書(2024年版):學(xué)生貸款擔(dān)保2篇
- 中層管理人員鋼筋工程承包合同樣本(2024年版)版
- 2025年度個人沿街店房租賃合同(含品牌授權(quán)與經(jīng)營規(guī)范)4篇
- 2025年度大型水電工程安裝承包合同示范文本4篇
- 城市微電網(wǎng)建設(shè)實施方案
- 企業(yè)文化融入中華傳統(tǒng)文化的實施方案
- 9.1增強安全意識 教學(xué)設(shè)計 2024-2025學(xué)年統(tǒng)編版道德與法治七年級上冊
- 《化工設(shè)備機械基礎(chǔ)(第8版)》全套教學(xué)課件
- 人教版八年級數(shù)學(xué)下冊舉一反三專題17.6勾股定理章末八大題型總結(jié)(培優(yōu)篇)(學(xué)生版+解析)
- 2024屆上海高考語文課內(nèi)古詩文背誦默寫篇目(精校版)
- DL-T5024-2020電力工程地基處理技術(shù)規(guī)程
- 初中數(shù)學(xué)要背誦記憶知識點(概念+公式)
- 駕照體檢表完整版本
- 農(nóng)產(chǎn)品農(nóng)藥殘留檢測及風(fēng)險評估
- 農(nóng)村高中思想政治課時政教育研究的中期報告
評論
0/150
提交評論