河北省保定市唐縣重點名校2024年中考聯(lián)考數(shù)學試卷含解析_第1頁
河北省保定市唐縣重點名校2024年中考聯(lián)考數(shù)學試卷含解析_第2頁
河北省保定市唐縣重點名校2024年中考聯(lián)考數(shù)學試卷含解析_第3頁
河北省保定市唐縣重點名校2024年中考聯(lián)考數(shù)學試卷含解析_第4頁
河北省保定市唐縣重點名校2024年中考聯(lián)考數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省保定市唐縣重點名校2024年中考聯(lián)考數(shù)學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖所示,正方形ABCD的面積為12,△ABE是等邊三角形,點E在正方形ABCD內,在對角線AC上有一點P,使PD+PE的和最小,則這個最小值為()A.2 B.2 C.3 D.2.計算(1-)÷的結果是()A.x-1 B. C. D.3.如圖,四邊形ABCD中,AD∥BC,∠B=90°,E為AB上一點,分別以ED,EC為折痕將兩個角(∠A,∠B)向內折起,點A,B恰好落在CD邊的點F處.若AD=3,BC=5,則EF的值是()A. B.2 C. D.24.如圖,為了測量河對岸l1上兩棵古樹A、B之間的距離,某數(shù)學興趣小組在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則A、B之間的距離為()A.50m B.25m C.(50﹣)m D.(50﹣25)m5.三個等邊三角形的擺放位置如圖,若∠3=60°,則∠1+∠2的度數(shù)為()A.90° B.120° C.270° D.360°6.(3分)學校要組織足球比賽.賽制為單循環(huán)形式(每兩隊之間賽一場).計劃安排21場比賽,應邀請多少個球隊參賽?設邀請x個球隊參賽.根據(jù)題意,下面所列方程正確的是()A.B.C.D.7.不等式組的解集是()A.x>-1 B.x>3C.-1<x<3 D.x<38.如圖,一個可以自由轉動的轉盤被等分成6個扇形區(qū)域,并涂上了相應的顏色,轉動轉盤,轉盤停止后,指針指向藍色區(qū)域的概率是()A. B.C. D.9.計算(-1)×2的結果是()A.-2 B.-1 C.1 D.210.如圖,有一張三角形紙片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿著箭頭方向剪開,可能得不到全等三角形紙片的是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,點O是矩形紙片ABCD的對稱中心,E是BC上一點,將紙片沿AE折疊后,點B恰好與點O重合.若BE=3,則折痕AE的長為____.12.一個幾何體的三視圖如左圖所示,則這個幾何體是()A. B. C. D.13.不等式>4﹣x的解集為_____.14.如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是______.15.如圖,在△ABC中,∠C=90°,AC=BC=2,將△ABC繞點A順時針方向旋轉60°到△AB′C′的位置,連接C′B,則C′B=______16.某市政府為了改善城市容貌,綠化環(huán)境,計劃經過兩年時間,使綠地面積增加44%,則這兩年平均綠地面積的增長率為______.三、解答題(共8題,共72分)17.(8分)為進一步打造“宜居重慶”,某區(qū)擬在新竣工的矩形廣場的內部修建一個音樂噴泉,要求音樂噴泉M到廣場的兩個入口A、B的距離相等,且到廣場管理處C的距離等于A和B之間距離的一半,A、B、C的位置如圖所示.請在答題卷的原圖上利用尺規(guī)作圖作出音樂噴泉M的位置.(要求:不寫已知、求作、作法和結論,保留作圖痕跡,必須用鉛筆作圖)18.(8分)如圖,△ABC三個頂點的坐標分別為A(1,1)、B(4,2)、C(3,4).(1)畫出△ABC關于y軸的對稱圖形△A1B1C1,并寫出B1點的坐標;(2)畫出△ABC繞原點O旋轉180°后得到的圖形△A2B2C2,并寫出B2點的坐標;(3)在x軸上求作一點P,使△PAB的周長最小,并直接寫出點P的坐標.19.(8分)如圖所示是一幢住房的主視圖,已知:,房子前后坡度相等,米,米,設后房檐到地面的高度為米,前房檐到地面的高度米,求的值.20.(8分)已知:二次函數(shù)C1:y1=ax2+2ax+a﹣1(a≠0)把二次函數(shù)C1的表達式化成y=a(x﹣h)2+b(a≠0)的形式,并寫出頂點坐標;已知二次函數(shù)C1的圖象經過點A(﹣3,1).①求a的值;②點B在二次函數(shù)C1的圖象上,點A,B關于對稱軸對稱,連接AB.二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個交點,求k的取值范圍.21.(8分)每到春夏交替時節(jié),雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調查了部分市民(問卷調查表如表所示),并根據(jù)調查結果繪制了如下尚不完整的統(tǒng)計圖.治理楊絮一一您選哪一項?(單選)A.減少楊樹新增面積,控制楊樹每年的栽種量B.調整樹種結構,逐漸更換現(xiàn)有楊樹C.選育無絮楊品種,并推廣種植D.對雌性楊樹注射生物干擾素,避免產生飛絮E.其他根據(jù)以上統(tǒng)計圖,解答下列問題:(1)本次接受調查的市民共有人;(2)扇形統(tǒng)計圖中,扇形E的圓心角度數(shù)是;(3)請補全條形統(tǒng)計圖;(4)若該市約有90萬人,請估計贊同“選育無絮楊品種,并推廣種植”的人數(shù).22.(10分)如圖,某高速公路建設中需要確定隧道AB的長度.已知在離地面1500m高度C處的飛機上,測量人員測得正前方A、B兩點處的俯角分別為60°和45°.求隧道AB的長(≈1.73).23.(12分)如圖所示,平行四邊形形ABCD中,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).(1)求證:四邊形BEDF是平行四邊形;(2)請?zhí)砑右粋€條件使四邊形BEDF為菱形.24.近日,深圳市人民政府發(fā)布了《深圳市可持續(xù)發(fā)展規(guī)劃》,提出了要做可持續(xù)發(fā)展的全球創(chuàng)新城市的目標,某初中學校了解學生的創(chuàng)新意識,組織了全校學生參加創(chuàng)新能力大賽,從中抽取了部分學生成績,分為5組:A組50~60;B組60~70;C組70~80;D組80~90;E組90~100,統(tǒng)計后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖.抽取學生的總人數(shù)是人,扇形C的圓心角是°;補全頻數(shù)直方圖;該校共有2200名學生,若成績在70分以下(不含70分)的學生創(chuàng)新意識不強,有待進一步培養(yǎng),則該校創(chuàng)新意識不強的學生約有多少人?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】連接BD,交AC于O,∵正方形ABCD,∴OD=OB,AC⊥BD,∴D和B關于AC對稱,則BE交于AC的點是P點,此時PD+PE最小,∵在AC上取任何一點(如Q點),QD+QE都大于PD+PE(BE),∴此時PD+PE最小,此時PD+PE=BE,∵正方形的面積是12,等邊三角形ABE,∴BE=AB=,即最小值是2,故選A.【點睛】本題考查了正方形的性質,等邊三角形的性質,軸對稱-最短路線問題等知識點的應用,關鍵是找出PD+PE最小時P點的位置.2、B【解析】

先計算括號內分式的加法、將除式分子因式分解,再將除法轉化為乘法,約分即可得.【詳解】解:原式=(-)÷=?=,故選B.【點睛】本題主要考查分式的混合運算,解題的關鍵是掌握分式混合運算順序和運算法則.3、A【解析】試題分析:先根據(jù)折疊的性質得EA=EF,BE=EF,DF=AD=3,CF=CB=5,則AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,則可判斷四邊形ABHD為矩形,所以DH=AB=2EF,HC=BC﹣BH=BC﹣AD=2,然后在Rt△DHC中,利用勾股定理計算出DH=2,所以EF=.解:∵分別以ED,EC為折痕將兩個角(∠A,∠B)向內折起,點A,B恰好落在CD邊的點F處,∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,∴AB=2EF,DC=DF+CF=8,作DH⊥BC于H,∵AD∥BC,∠B=90°,∴四邊形ABHD為矩形,∴DH=AB=2EF,HC=BC﹣BH=BC﹣AD=5﹣3=2,在Rt△DHC中,DH==2,∴EF=DH=.故選A.點評:本題考查了折疊的性質:折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.也考查了勾股定理.4、C【解析】

如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得AB=MN=CM﹣CN,即可得到結論.【詳解】如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AB=MN,AM=BN.在直角△ACM中,∵∠ACM=45°,AM=50m,∴CM=AM=50m.在直角△BCN中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM﹣CN=50﹣(m).則AB=MN=(50﹣)m.故選C.【點睛】本題考查了解直角三角形的應用.解決此問題的關鍵在于正確理解題意的基礎上建立數(shù)學模型,把實際問題轉化為數(shù)學問題.5、B【解析】

先根據(jù)圖中是三個等邊三角形可知三角形各內角等于60°,用∠1,∠2,∠3表示出△ABC各角的度數(shù),再根據(jù)三角形內角和定理即可得出結論.【詳解】∵圖中是三個等邊三角形,∠3=60°,

∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,

∠BAC=180°-60°-∠1=120°-∠1,

∵∠ABC+∠ACB+∠BAC=180°,

∴60°+(120°-∠2)+(120°-∠1)=180°,

∴∠1+∠2=120°.

故選B.【點睛】考查的是等邊三角形的性質,熟知等邊三角形各內角均等于60°是解答此題的關鍵.6、B.【解析】試題分析:設有x個隊,每個隊都要賽(x﹣1)場,但兩隊之間只有一場比賽,由題意得:,故選B.考點:由實際問題抽象出一元二次方程.7、B【解析】

根據(jù)解不等式組的方法可以求得原不等式組的解集.【詳解】,解不等式①,得x>-1,解不等式②,得x>1,由①②可得,x>1,故原不等式組的解集是x>1.故選B.【點睛】本題考查解一元一次不等式組,解題的關鍵是明確解一元一次不等式組的方法.8、B【解析】試題解析:∵轉盤被等分成6個扇形區(qū)域,而黃色區(qū)域占其中的一個,∴指針指向黃色區(qū)域的概率=.故選A.考點:幾何概率.9、A【解析】

根據(jù)兩數(shù)相乘,同號得正,異號得負,再把絕對值相乘計算即可.【詳解】-1×2=-故選A.【點睛】本題考查了有理數(shù)的乘法計算,解答本題的關鍵是熟練掌握有理數(shù)的乘法法則.10、C【解析】

根據(jù)全等三角形的判定定理進行判斷.【詳解】解:A、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;B、由全等三角形的判定定理SAS證得圖中兩個小三角形全等,故本選項不符合題意;C、如圖1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其對應邊應該是BE和CF,而已知給的是BD=FC=3,所以不能判定兩個小三角形全等,故本選項符合題意;D、如圖2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定兩個小三角形全等,故本選項不符合題意;由于本題選擇可能得不到全等三角形紙片的圖形,故選C.【點睛】本題考查了全等三角形的判定,注意三角形邊和角的對應關系是關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、6【解析】試題分析:由題意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,設AB=AO=OC=x,則有AC=2x,∠ACB=30°,在Rt△ABC中,根據(jù)勾股定理得:BC=x,在Rt△OEC中,∠OCE=30°,∴OE=EC,即BE=EC,∵BE=3,∴OE=3,EC=6,則AE=6故答案為6.12、A【解析】

根據(jù)主視圖和左視圖可知該幾何體是柱體,根據(jù)俯視圖可知該幾何體是豎立的三棱柱.【詳解】根據(jù)主視圖和左視圖可知該幾何體是柱體,根據(jù)俯視圖可知該幾何體是豎立的三棱柱.主視圖中間的線是實線.故選A.【點睛】考查簡單幾何體的三視圖,掌握常見幾何體的三視圖是解題的關鍵.13、x>1.【解析】

按照去分母、去括號、移項、合并同類項、系數(shù)化為1的步驟求解即可.【詳解】解:去分母得:x﹣1>8﹣2x,移項合并得:3x>12,解得:x>1,故答案為:x>1【點睛】本題考查了一元一次不等式的解法,熟練掌握解一元一次不等式的步驟是解答本題的關鍵.14、【解析】

利用特殊三角形的三邊關系,求出AM,AE長,求比值.【詳解】解:如圖所示,設BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根據(jù)題意得:AD=BC=x,AE=DE=AB=x,如圖,作EM⊥AD于M,則AM=AD=x,在Rt△AEM中,cos∠EAD=,故答案為:.【點睛】特殊三角形:30°-60°-90°特殊三角形,三邊比例是1::2,利用特殊三角函數(shù)值或者勾股定理可快速求出邊的實際關系.15、3【解析】如圖,連接BB′,∵△ABC繞點A順時針方向旋轉60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等邊三角形,∴AB=BB′,在△ABC′和△B′BC′中,AB=BB'AC'=B'C'∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延長BC′交AB′于D,則BD⊥AB′,∵∠C=90°,AC=BC=2,∴AB=(2∴BD=2×32=3C′D=12∴BC′=BD?C′D=3?1.故答案為:3?1.點睛:本題考查了旋轉的性質,全等三角形的判定與性質,等邊三角形的判定與性質,等腰直角三角形的性質,作輔助線構造出全等三角形并求出BC′在等邊三角形的高上是解題的關鍵,也是本題的難點.16、10%【解析】

本題可設這兩年平均每年的增長率為x,因為經過兩年時間,讓市區(qū)綠地面積增加44%,則有(1+x)1=1+44%,解這個方程即可求出答案.【詳解】解:設這兩年平均每年的綠地增長率為x,根據(jù)題意得,

(1+x)1=1+44%,

解得x1=-1.1(舍去),x1=0.1.

答:這兩年平均每年綠地面積的增長率為10%.故答案為10%【點睛】此題考查增長率的問題,一般公式為:原來的量×(1±x)1=現(xiàn)在的量,增長用+,減少用-.但要注意解的取舍,及每一次增長的基礎.三、解答題(共8題,共72分)17、解:作AB的垂直平分線,以點C為圓心,以AB的一半為半徑畫弧交AB的垂直平分線于點M即可.【解析】

易得M在AB的垂直平分線上,且到C的距離等于AB的一半.18、(1)畫圖見解析;(2)畫圖見解析;(3)畫圖見解析.【解析】

試題分析:(1)、根據(jù)網(wǎng)格結構找出點A、B、C平移后的對應點A1、B1、C1的位置,然后順次連接即可;(2)、根據(jù)網(wǎng)格結構找出點A、B、C關于原點的對稱點A2、B2、C2的位置,然后順次連接即可;(3)、找出點A關于x軸的對稱點A′,連接A′B與x軸相交于一點,根據(jù)軸對稱確定最短路線問題,交點即為所求的點P的位置,然后連接AP、BP并根據(jù)圖象寫出點P的坐標即可.試題解析:(1)、△A1B1C1如圖所示;B1點的坐標(-4,2)(2)、△A2B2C2如圖所示;B2點的坐標:(-4,-2)(3)、△PAB如圖所示,P(2,0).考點:(1)、作圖-旋轉變換;(2)、軸對稱-最短路線問題;(3)、作圖-平移變換.19、【解析】

過A作一條水平線,分別過B,C兩點作這條水平線的垂線,垂足分別為D,E,由后坡度AB與前坡度AC相等知∠BAD=∠CAE=30°,從而得出BD=2、CE=3,據(jù)此可得.【詳解】解:過A作一條水平線,分別過B,C兩點作這條水平線的垂線,垂足分別為D,E,

∵房子后坡度AB與前坡度AC相等,

∴∠BAD=∠CAE,

∵∠BAC=120°,

∴∠BAD=∠CAE=30°,

在直角△ABD中,AB=4米,

∴BD=2米,

在直角△ACE中,AC=6米,

∴CE=3米,

∴a-b=1米.【點睛】本題考查了解直角三角形的應用-坡度坡角問題,解題的關鍵是根據(jù)題意構建直角三角形,并熟練掌握坡度坡角的概念.20、(1)y1=a(x+1)2﹣1,頂點為(﹣1,﹣1);(2)①;②k的取值范圍是≤k≤或k=﹣1.【解析】

(1)化成頂點式即可求得;(2)①把點A(﹣3,1)代入二次函數(shù)C1:y1=ax2+2ax+a﹣1即可求得a的值;②根據(jù)對稱的性質得出B的坐標,然后分兩種情況討論即可求得;【詳解】(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,∴頂點為(﹣1,﹣1);(2)①∵二次函數(shù)C1的圖象經過點A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a=;②∵A(﹣3,1),對稱軸為直線x=﹣1,∴B(1,1),當k>0時,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象經過A(﹣3,1)時,1=9k﹣3k,解得k=,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象經過B(1,1)時,1=k+k,解得k=,∴≤k≤,當k<0時,∵二次函數(shù)C2:y2=kx2+kx=k(x+)2﹣k,∴﹣k=1,∴k=﹣1,綜上,二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個交點,k的取值范圍是≤k≤或k=﹣1.【點睛】本題考查了二次函數(shù)和系數(shù)的關系,二次函數(shù)的最值問題,軸對稱的性質等,分類討論是解題的關鍵.21、(1)2000;(2)28.8°;(3)補圖見解析;(4)36萬人.【解析】分析:(1)將A選項人數(shù)除以總人數(shù)即可得;(2)用360°乘以E選項人數(shù)所占比例可得;(3)用總人數(shù)乘以D選項人數(shù)所占百分比求得其人數(shù),據(jù)此補全圖形即可得;(4)用總人數(shù)乘以樣本中C選項人數(shù)所占百分比可得.詳解:(1)本次接受調查的市民人數(shù)為300÷15%=2000人,(2)扇形統(tǒng)計圖中,扇形E的圓心角度數(shù)是360°×=28.8°,(3)D選項的人數(shù)為2000×25%=500,補全條形圖如下:(4)估計贊同“選育無絮楊品種,并推廣種植”的人數(shù)為90×40%=36(萬人).點睛:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?2、簡答:∵OA,OB=OC=1500,∴AB=(m).答:隧道AB的長約為635m.【解析】試題分析:首先過點C作CO⊥AB,根據(jù)Rt△AOC求出OA的長度,根據(jù)Rt△CBO求出OB的長度,然后進行計算.試題解析:如圖,過點C作CO⊥直線AB,垂足為O,則CO="1500m"∵BC∥OB∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°∴在Rt△CAO中,OA=1500tan60°=1500×3在Rt△CBO中,OB=1500×t

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論