齊魯教科研協(xié)作體、湖北重高2025年開學(xué)摸底考試高三數(shù)學(xué)試題(含版解析)含解析_第1頁
齊魯教科研協(xié)作體、湖北重高2025年開學(xué)摸底考試高三數(shù)學(xué)試題(含版解析)含解析_第2頁
齊魯教科研協(xié)作體、湖北重高2025年開學(xué)摸底考試高三數(shù)學(xué)試題(含版解析)含解析_第3頁
齊魯教科研協(xié)作體、湖北重高2025年開學(xué)摸底考試高三數(shù)學(xué)試題(含版解析)含解析_第4頁
齊魯教科研協(xié)作體、湖北重高2025年開學(xué)摸底考試高三數(shù)學(xué)試題(含版解析)含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

齊魯教科研協(xié)作體、湖北重高2025年開學(xué)摸底考試高三數(shù)學(xué)試題(含版解析)注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)函數(shù)定義域為全體實數(shù),令.有以下6個論斷:①是奇函數(shù)時,是奇函數(shù);②是偶函數(shù)時,是奇函數(shù);③是偶函數(shù)時,是偶函數(shù);④是奇函數(shù)時,是偶函數(shù)⑤是偶函數(shù);⑥對任意的實數(shù),.那么正確論斷的編號是()A.③④ B.①②⑥ C.③④⑥ D.③④⑤2.已知數(shù)列中,,(),則等于()A. B. C. D.23.已知,且,則在方向上的投影為()A. B. C. D.4.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度5.若復(fù)數(shù)是純虛數(shù),則()A.3 B.5 C. D.6.已知命題,;命題若,則,下列命題為真命題的是()A. B. C. D.7.已知正方體的棱長為2,點為棱的中點,則平面截該正方體的內(nèi)切球所得截面面積為()A. B. C. D.8.已知向量與的夾角為,,,則()A. B.0 C.0或 D.9.年部分省市將實行“”的新高考模式,即語文、數(shù)學(xué)、英語三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒有偏好,且不受其他因素影響,則甲同學(xué)同時選擇歷史和化學(xué)的概率為A. B.C. D.10.若各項均為正數(shù)的等比數(shù)列滿足,則公比()A.1 B.2 C.3 D.411.世紀產(chǎn)生了著名的“”猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半;如果是奇數(shù),則將它乘加,不斷重復(fù)這樣的運算,經(jīng)過有限步后,一定可以得到.如圖是驗證“”猜想的一個程序框圖,若輸入正整數(shù)的值為,則輸出的的值是()A. B. C. D.12.已知,是兩條不重合的直線,是一個平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則二、填空題:本題共4小題,每小題5分,共20分。13.若變量,滿足約束條件則的最大值是______.14.若冪函數(shù)的圖象經(jīng)過點,則其單調(diào)遞減區(qū)間為_______.15.已知函數(shù),則函數(shù)的極大值為___________.16.若實數(shù),滿足,則的最小值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在①;②;③這三個條件中任選一個,補充在下面問題中的橫線上,并解答相應(yīng)的問題.在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足________________,,求的面積.18.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為.(Ⅰ)求直線的直角坐標方程與曲線的普通方程;(Ⅱ)已知點設(shè)直線與曲線相交于兩點,求的值.19.(12分)設(shè)函數(shù).(1)若恒成立,求整數(shù)的最大值;(2)求證:.20.(12分)已知點是拋物線的頂點,,是上的兩個動點,且.(1)判斷點是否在直線上?說明理由;(2)設(shè)點是△的外接圓的圓心,點到軸的距離為,點,求的最大值.21.(12分)設(shè)函數(shù)f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(22.(10分)在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為(),將曲線向左平移2個單位長度得到曲線.(1)求曲線的普通方程和極坐標方程;(2)設(shè)直線與曲線交于兩點,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

根據(jù)函數(shù)奇偶性的定義即可判斷函數(shù)的奇偶性并證明.【詳解】當是偶函數(shù),則,所以,所以是偶函數(shù);當是奇函數(shù)時,則,所以,所以是偶函數(shù);當為非奇非偶函數(shù)時,例如:,則,,此時,故⑥錯誤;故③④正確.故選:A本題考查了函數(shù)的奇偶性定義,掌握奇偶性定義是解題的關(guān)鍵,屬于基礎(chǔ)題.2.A【解析】

分別代值計算可得,觀察可得數(shù)列是以3為周期的周期數(shù)列,問題得以解決.【詳解】解:∵,(),

,

,

…,

∴數(shù)列是以3為周期的周期數(shù)列,

,

故選:A.本題考查數(shù)列的周期性和運用:求數(shù)列中的項,考查運算能力,屬于基礎(chǔ)題.3.C【解析】

由向量垂直的向量表示求出,再由投影的定義計算.【詳解】由可得,因為,所以.故在方向上的投影為.故選:C.本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關(guān)系是解題關(guān)鍵.4.D【解析】

通過變形,通過“左加右減”即可得到答案.【詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點向右平移個單位長度可得到函數(shù)的圖象,故答案為D.本題主要考查三角函數(shù)的平移變換,難度不大.5.C【解析】

先由已知,求出,進一步可得,再利用復(fù)數(shù)模的運算即可【詳解】由z是純虛數(shù),得且,所以,.因此,.故選:C.本題考查復(fù)數(shù)的除法、復(fù)數(shù)模的運算,考查學(xué)生的運算能力,是一道基礎(chǔ)題.6.B【解析】解:命題p:?x>0,ln(x+1)>0,則命題p為真命題,則¬p為假命題;取a=﹣1,b=﹣2,a>b,但a2<b2,則命題q是假命題,則¬q是真命題.∴p∧q是假命題,p∧¬q是真命題,¬p∧q是假命題,¬p∧¬q是假命題.故選B.7.A【解析】

根據(jù)球的特點可知截面是一個圓,根據(jù)等體積法計算出球心到平面的距離,由此求解出截面圓的半徑,從而截面面積可求.【詳解】如圖所示:設(shè)內(nèi)切球球心為,到平面的距離為,截面圓的半徑為,因為內(nèi)切球的半徑等于正方體棱長的一半,所以球的半徑為,又因為,所以,又因為,所以,所以,所以截面圓的半徑,所以截面圓的面積為.故選:A.本題考查正方體的內(nèi)切球的特點以及球的截面面積的計算,難度一般.任何一個平面去截球,得到的截面一定是圓面,截面圓的半徑可通過球的半徑以及球心到截面的距離去計算.8.B【解析】

由數(shù)量積的定義表示出向量與的夾角為,再由,代入表達式中即可求出.【詳解】由向量與的夾角為,得,所以,又,,,,所以,解得.故選:B本題主要考查向量數(shù)量積的運算和向量的模長平方等于向量的平方,考查學(xué)生的計算能力,屬于基礎(chǔ)題.9.B【解析】

甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計算公式,可得甲同學(xué)同時選擇歷史和化學(xué)的概率,故選B.10.C【解析】

由正項等比數(shù)列滿足,即,又,即,運算即可得解.【詳解】解:因為,所以,又,所以,又,解得.故選:C.本題考查了等比數(shù)列基本量的求法,屬基礎(chǔ)題.11.C【解析】

列出循環(huán)的每一步,可得出輸出的的值.【詳解】,輸入,,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)不成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,不成立,是偶數(shù)成立,則;,成立,跳出循環(huán),輸出的值為.故選:C.本題考查利用程序框圖計算輸出結(jié)果,考查計算能力,屬于基礎(chǔ)題.12.D【解析】

利用空間位置關(guān)系的判斷及性質(zhì)定理進行判斷.【詳解】解:選項A中直線,還可能相交或異面,選項B中,還可能異面,選項C,由條件可得或.故選:D.本題主要考查直線與平面平行、垂直的性質(zhì)與判定等基礎(chǔ)知識;考查空間想象能力、推理論證能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.9【解析】

做出滿足條件的可行域,根據(jù)圖形,即可求出的最大值.【詳解】做出不等式組表示的可行域,如圖陰影部分所示,目標函數(shù)過點時取得最大值,聯(lián)立,解得,即,所以最大值為9.故答案為:9.本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標函數(shù)的最值,屬于基礎(chǔ)題.14.【解析】

利用待定系數(shù)法求出冪函數(shù)的解析式,再求出的單調(diào)遞減區(qū)間.【詳解】解:冪函數(shù)的圖象經(jīng)過點,則,解得;所以,其中;所以的單調(diào)遞減區(qū)間為.故答案為:.本題考查了冪函數(shù)的圖象與性質(zhì)的應(yīng)用問題,屬于基礎(chǔ)題.15.【解析】

對函數(shù)求導(dǎo),通過賦值,求得,再對函數(shù)單調(diào)性進行分析,求得極大值.【詳解】,故解得,,令,解得函數(shù)在單調(diào)遞增,在單調(diào)遞減,故的極大值為故答案為:.本題考查函數(shù)極值的求解,難點是要通過賦值,求出未知量.16.【解析】

由約束條件先畫出可行域,然后求目標函數(shù)的最小值.【詳解】由約束條件先畫出可行域,如圖所示,由,即,當平行線經(jīng)過點時取到最小值,由可得,此時,所以的最小值為.故答案為.本題考查了線性規(guī)劃的知識,解題的一般步驟為先畫出可行域,然后改寫目標函數(shù),結(jié)合圖形求出最值,需要掌握解題方法.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.橫線處任填一個都可以,面積為.【解析】

無論選哪一個,都先由正弦定理化邊為角后,由誘導(dǎo)公式,展開后,可求得角,再由余弦定理求得,從而易求得三角形面積.【詳解】在橫線上填寫“”.解:由正弦定理,得.由,得.由,得.所以.又(若,則這與矛盾),所以.又,得.由余弦定理及,得,即.將代入,解得.所以.在橫線上填寫“”.解:由及正弦定理,得.又,所以有.因為,所以.從而有.又,所以由余弦定理及,得即.將代入,解得.所以.在橫線上填寫“”解:由正弦定理,得.由,得,所以由二倍角公式,得.由,得,所以.所以,即.由余弦定理及,得.即.將代入,解得.所以.本題考查三角形面積公式,考查正弦定理、余弦定理,兩角和的正弦公式等,正弦定理進行邊角轉(zhuǎn)換,求三角形面積時,①若三角形中已知一個角(角的大小或該角的正、余弦值),結(jié)合題意求解這個角的兩邊或該角的兩邊之積,代入公式求面積;②若已知三角形的三邊,可先求其一個角的余弦值,再求其正弦值,代入公式求面積,總之,結(jié)合圖形恰當選擇面積公式是解題的關(guān)鍵.18.(Ⅰ)直線的直角坐標方程為;曲線的普通方程為;(Ⅱ).【解析】

(I)利用參數(shù)方程、普通方程、極坐標方程間的互化公式即可;(II)將直線參數(shù)方程代入拋物線的普通方程,可得,而根據(jù)直線參數(shù)方程的幾何意義,知,代入即可解決.【詳解】由可得直線的直角坐標方程為由曲線的參數(shù)方程,消去參數(shù)可得曲線的普通方程為.易知點在直線上,直線的參數(shù)方程為(為參數(shù)).將直線的參數(shù)方程代入曲線的普通方程,并整理得.設(shè)是方程的兩根,則有.本題考查參數(shù)方程、普通方程、極坐標方程間的互化,直線參數(shù)方程的幾何意義,是一道容易題.19.(1)整數(shù)的最大值為;(2)見解析.【解析】

(1)將不等式變形為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性并確定其最值,從而得到正整數(shù)的最大值;(2)根據(jù)(1)的結(jié)論得到,利用不等式的基本性質(zhì)可證得結(jié)論.【詳解】(1)由得,令,,令,對恒成立,所以,函數(shù)在上單調(diào)遞增,,,,,故存在使得,即,從而當時,有,,所以,函數(shù)在上單調(diào)遞增;當時,有,,所以,函數(shù)在上單調(diào)遞減.所以,,,因此,整數(shù)的最大值為;(2)由(1)知恒成立,,令則,,,,,上述等式全部相加得,所以,,因此,本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性、最值中的應(yīng)用,以及放縮法證明不等式的技巧,屬于難題.20.(1)不在,證明見詳解;(2)【解析】

(1)假設(shè)直線方程,并于拋物線方程聯(lián)立,結(jié)合韋達定理,計算,可得,然后驗證可得結(jié)果.(2)分別計算線段中垂線的方程,然后聯(lián)立,根據(jù)(1)的條件可得點的軌跡方程,然后可得焦點,結(jié)合拋物線定義可得,計算可得結(jié)果.【詳解】(1)設(shè)直線方程,根據(jù)題意可知直線斜率一定存在,則則由所以將代入上式化簡可得,所以則直線方程為,所以直線過定點,所以可知點不在直線上.(2)設(shè)線段的中點為線段的中點為則直線的斜率為,直線的斜率為可知線段的中垂線的方程為由,所以上式化簡為即線段的中垂線的方程為同理可得:線段的中垂線的方程為則由(1)可知:所以即,所以點軌跡方程為焦點為,所以當三點共線時,有最大所以本題考查直線于拋物線的綜合應(yīng)用,第(1)問中難點在于計算處,第(2)問中關(guān)鍵在于得到點的軌跡方程,直線與圓錐曲線的綜合常常要聯(lián)立方程,結(jié)合韋達定理,屬難題.21.(I)π;(II)-【解析】

(I)化簡得到fx(II)f(α2)=2sin【詳解】(I)f(x)==2sin2x+(II)f(α2)=2sinα∈(π6,π),故α+故α+π12∈sin(2α+本題考查了三角函數(shù)的周期,三角恒等變換,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.22.(1)的極坐標方程為,普通方程為;(2)【解析】

(1)根據(jù)三角函數(shù)恒等變換可得,,可得曲線的普通方程,再運用圖像的平移得依題意得曲線的普通方程為,利用極坐標與平面直角坐標互化的公式可得方程;(2)法一:將代入曲線的極坐標方程得,運

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論