2021-2022學年湘教版高中數學必修第二冊教案第一章平面向量及其應用1-6-3解三角形應用舉例_第1頁
2021-2022學年湘教版高中數學必修第二冊教案第一章平面向量及其應用1-6-3解三角形應用舉例_第2頁
2021-2022學年湘教版高中數學必修第二冊教案第一章平面向量及其應用1-6-3解三角形應用舉例_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1.6.3解三角形應用舉例新課程標準解讀核心素養(yǎng)1.利用正、余弦定理解決生產實踐中的有關距離、高度、角度的測量問題數學建模2.能夠運用正、余弦定理進一步解決一些有關三角形的計算問題數學運算教學設計一、目標展示二、情境導入早在1671年,兩位法國天文學家為了測量地球與月球之間的距離,利用幾乎位于同一經線上的柏林(點A)與好望角(點B)為基點,測量出α,β的大小,并計算出兩地之間的距離AB,進而算出了地球與月球之間的距離約為385400km.[問題]你能根據以上條件計算出地球與月球之間的距離嗎?三、合作探究知識點實際應用問題中的有關名詞、術語1.基線的概念與選取原則(1)基線:根據測量的需要而確定的線段叫做基線;(2)選取原則:為使測量具有較高的精確度,應根據實際需要選取合適的基線長度.一般來說,基線越長,測量的精確度越高.2.方向角從指定方向線到目標方向線所成的小于90°的水平角.如圖,北偏東30°,南偏東45°.3.仰角和俯角(1)前提:在視線所在的垂直平面內;(2)仰角:視線在水平線以上時,視線與水平線所成的角;(3)俯角:視線在水平線以下時,視線與水平線所成的角.李堯出校向南前進了200米,再向東走了200米,回到自己家中,你認為李堯的家在學校的哪個方向?四、精講點撥[例1](鏈接教科書第49頁例9)海洋藍洞是地球罕見的自然地理現象,被喻為“地球留給人類保留宇宙秘密的最后遺產”,我國擁有世界上最深的海洋藍洞,若要測量如圖所示的藍洞的口徑A,B兩點間的距離,先在珊瑚群島上取兩點C,D,測得CD=40米,∠ADB=135°,∠BDC=∠DCA=15°,∠ACB=120°.(1)求B,D兩點的距離;(2)求A,B兩點的距離.[例2](鏈接教科書第49頁例10)如圖,測量河對岸的塔高AB時,可以選與塔底B在同一水平面內的兩點C與D.現測得∠BCD=α,∠BDC=β,CD=s,并在點C測得塔頂A的仰角為θ,求塔高AB.[例3](鏈接教科書第50頁例11)某海上養(yǎng)殖基地A,接到氣象部門預報,位于基地南偏東60°相距20(+1)海里的海面上有一臺風中心,影響半徑為20海里,正以每小時10

海里的速度沿某一方向勻速直線前進,預計臺風中心將從基地東北方向刮過且+1小時后開始持續(xù)影響基地2小時.求臺風移動的方向.五、達標檢測1.如圖,兩座燈塔A和B與海岸觀察站C的距離相等,燈塔A在觀察站C的南偏西40°,燈塔B在觀察站C的南偏東60°,則燈塔A在燈塔B的()A.北偏東10° B.北偏西10°C.南偏東80° D.南偏西80°2.兩燈塔A,B與海洋觀察站C的距離都等于2km,燈塔A在C北偏東45°,B在C南偏東15°,則A,B之間的距離為()A.2

km B.3

kmC.4

km D.5

km3.如圖,兩座相距60m的建筑物AB,CD的高度分別為20m,50m,BD為水平面,求從建筑物AB的頂

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論