




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
人教版八年級數(shù)學上冊第十三章軸對稱素養(yǎng)綜合測試題及答案一、選擇題(每小題3分,共30分)1.(2022獨家原創(chuàng))下圖是天氣預報中的圖形,其中是軸對稱圖形的為() A B C D2.(2022獨家原創(chuàng))如圖,在△ABC中,∠BAC=75°,∠ACB=35°,AC=8,∠ABC的平分線BD交邊AC于點D,則AD+BD的長為()A.10B.8C.6D.43.(2020湖南益陽中考)如圖,在△ABC中,AC的垂直平分線交AB于點D,交AC于點E,CD平分∠ACB,若∠A=50°,則∠B的度數(shù)為()A.25°B.30°C.35°D.40°4.(2021河北石家莊二十八中期中)如圖,△ABC中,點D在AC上,連接BD,∠ABD=2∠DBC,∠ADB=2∠C,∠DBC=∠A,則圖中共有等腰三角形()A.0個B.1個C.2個D.3個5.如圖,在棋盤中建立直角坐標系xOy,現(xiàn)將A,O,B三顆棋子分別放置在(-2,2),(0,0),(1,0)處.如果在其他格點位置添加一顆棋子P,使四顆棋子A,O,B,P成為軸對稱圖形,則滿足條件的棋子P的位置的坐標不正確的是()A.(-2,3)B.(-3,2)C.(-2,-2)D.(0,-1)6.(2020湖北宜昌中考)如圖,點E,F,G,Q,H在一條直線上,且EF=GH,我們知道按如圖所作的直線l為線段FG的垂直平分線.下列說法正確的是()A.l是線段EH的垂直平分線B.l是線段EQ的垂直平分線C.l是線段FH的垂直平分線D.EH是l的垂直平分線7.(2020山東濟南期末)如圖,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=1,則AD的長為()A.1.5B.2C.3D.48.如圖,在△ABC中,AB=AC,∠C=70°,△AFG與△ABC關于直線DE成軸對稱,∠CAE=10°,連接BF,則∠ABF的度數(shù)是()A.30°B.35°C.40°D.45° 第8題圖 第9題圖9.如圖,在鈍角三角形ABC中,∠ABC為鈍角,以點B為圓心,AB的長為半徑畫弧,再以點C為圓心,AC的長為半徑畫弧,兩弧交于點D,連接AD,與CB的延長線交于點E.下列結(jié)論錯誤的是()A.CE垂直平分ADB.CE平分∠ACDC.△ABD是等腰三角形D.△ACD是等邊三角形10.(2021河南鄭州模擬)如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點O,過點O作EF∥BC交AB于E,交AC于F,過點O作OD⊥AC于D,下列選項中結(jié)論錯誤的是()A.EF=BE+CFB.∠BOC=90°+12∠C.點O到△ABC各邊的距離相等D.設OD=m,AE+AF=n,則S△AEF=mn二、填空題(每小題3分,共24分)11.(2021山東淄博中考)在直角坐標系中,點A(3,2)關于x軸的對稱點為A1,將點A1向左平移3個單位得到點A2,則點A2的坐標為.
12.(2022獨家原創(chuàng))如圖,在3×3的方格圖中,將其中一個小方格涂陰影,使整個圖形為軸對稱圖形,這樣的軸對稱圖形共有個.
13.(2022黑龍江齊齊哈爾三中期中)如圖,將△ABC折疊,使點A與BC邊中點D重合,折痕為MN,若AB=9,BC=6,則△DNB的周長為.
14.(2019湖南永州中考)已知∠AOB=60°,OC是∠AOB的平分線,點D為OC上一點,過D作直線DE⊥OA,垂足為點E,且直線DE交OB于點F,如圖所示.若DE=2,則DF=.
15.(2021江蘇蘇州中考)如圖,在Rt△ABC中,∠C=90°,AF=EF.若∠CFE=72°,則∠B=°.
16.(2022安徽蕪湖一中期末)如圖,已知點D、E分別是等邊三角形ABC中BC、AB邊的中點,AD=6,點F是線段AD上的動點,則BF+EF的最小值為.
17.如圖,已知D為等邊三角形紙片ABC的邊AB上的點,過點D作DG∥BC交AC于點G,DE⊥BC于點E,過點G作GF⊥BC于點F.把三角形紙片ABC分別沿DG,DE,GF按如圖所示的方式折疊,則圖中陰影部分是三角形.
18.(2021四川綿陽模擬)如圖,∠BOC=60°,點A是OB的反向延長線上的一點,OA=10cm,動點P從點A出發(fā)沿AB以2cm/s的速度移動,動點Q從點O出發(fā)沿OC以1cm/s的速度移動,如果點P、Q同時出發(fā),用t(s)表示移動的時間,當t=時,△POQ是等腰三角形.
三、解答題(共46分)19.(2019廣西中考)(6分)如圖,在平面直角坐標系中,已知△ABC的三個頂點坐標分別是A(2,-1),B(1,-2),C(3,-3).(1)將△ABC向上平移4個單位長度得到△A1B1C1,請畫出△A1B1C1;(2)請畫出與△ABC關于y軸對稱的△A2B2C2;(3)請寫出A1、A2的坐標.20.(6分)如圖,四邊形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD的長.21.(2022浙江溫州期末)(8分)如圖,在△ABC中,AB=AC,點E,F在邊BC上,BE<BF.已知BE=CF.(1)求證:△ABE≌△ACF;(2)若點D在AF的延長線上,AD=AC,∠BAE=30°,∠BAD=75°,求證:AB∥DC.22.(8分)如圖,在△ABC中,AB=AC,點D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.(1)求證:△DEF是等腰三角形;(2)當∠A=44°時,求∠DEF的度數(shù).23.(2018浙江紹興中考)(8分)數(shù)學課上,張老師舉了下面的例題:例1等腰三角形ABC中,∠A=110°,求∠B的度數(shù).(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度數(shù).(答案:40°或70°或100°)張老師啟發(fā)同學們進行變式,小敏編了如下一題:變式等腰三角形ABC中,∠A=80°,求∠B的度數(shù).(1)請你解答以上的變式題;(2)解(1)后,小敏發(fā)現(xiàn),∠A的度數(shù)不同,得到∠B的度數(shù)的個數(shù)也可能不同,如果在等腰三角形ABC中,設∠A=x°,當∠B有三個不同的度數(shù)時,請你探索x的取值范圍.24.(10分)如圖,在平面直角坐標系中,點A的坐標為(1,0),以線段OA為邊在第四象限內(nèi)作等邊三角形AOB,點C為x軸正半軸上一動點(OC>1),連接BC,以線段BC為邊在第四象限內(nèi)作等邊三角形CBD,連接DA并延長,交y軸于點E.(1)求證:OC=AD;(2)在點C的運動過程中,∠CAD的度數(shù)是否會變化?如果不變,請求出∠CAD的度數(shù);如果改變,請說明理由;(3)當點C運動到什么位置時,以A、E、C為頂點的三角形是等腰三角形?
答案全解全析1.C根據(jù)軸對稱圖形的定義可知,選項A中的圖形不是軸對稱圖形,選項B中的圖形不是軸對稱圖形,選項C中的圖形是軸對稱圖形,選項D中的圖形不是軸對稱圖形.故選C.2.B在△ABC中,∠BAC=75°,∠ACB=35°,∴∠ABC=180°-∠BAC-∠ACB=70°,∵BD平分∠ABC,∴∠DBC=12∠∴∠DBC=∠ACB,∴BD=CD,∴AD+BD=AD+CD=AC=8.故選B.3.B∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=50°,又∵CD平分∠ACB,∴∠ACB=2∠ACD=100°,∴∠B=180°-∠A-∠ACB=180°-50°-100°=30°,故選B.4.D圖中共有等腰三角形3個.∵∠ADB=∠C+∠DBC,∠ADB=2∠C,∴∠DBC=∠C,∴△BCD是等腰三角形,∵∠ABD=2∠DBC,∴∠ABD=∠ADB,∴△ABD是等腰三角形,∵∠DBC=∠A,∴∠A=∠C,∴△ABC是等腰三角形,故選D.5.B滿足條件的點P的位置如圖所示,點P的坐標為(-2,3)或(3,2)或(-2,-2)或(0,-1),故選B.6.A設直線l與FG交于點O(圖略),∵直線l為線段FG的垂直平分線,∴FO=GO,l⊥FG,∵EF=GH,∴EF+FO=GH+OG,即EO=OH,∴l(xiāng)為線段EH的垂直平分線,故選項A正確;∵EO≠OQ,∴l(xiāng)不是線段EQ的垂直平分線,故選項B錯誤;∵FO≠OH,∴l(xiāng)不是線段FH的垂直平分線,故選項C錯誤;∵l為直線,直線沒有垂直平分線,∴EH不能平分直線l,故選項D錯誤.故選A.7.B∵∠DBC=60°,∠C=90°,∴∠BDC=90°-60°=30°,∴BD=2BC=2×1=2,∵∠C=90°,∠A=15°,∴∠ABC=90°-15°=75°,∴∠ABD=∠ABC-∠DBC=75°-60°=15°,∴∠ABD=∠A,∴AD=BD=2.故選B.8.C∵△AFG與△ABC關于直線DE成軸對稱,∴△AFG≌△ABC,∠GAE=∠CAE=10°,∴∠GAF=∠CAB,AB=AF,∵AB=AC,∠C=70°,∴∠ABC=∠ACB=70°,∴∠GAF=∠BAC=40°,∴∠BAF=40°+10°+10°+40°=100°,∵AB=AF,∴∠ABF=∠AFB=40°.故選C.9.D由題意可得CA=CD,BA=BD,∴直線CB是AD的垂直平分線,即CE垂直平分AD,故A選項結(jié)論正確;∵AC=DC,CE⊥AD,∴∠ACE=∠DCE,即CE平分∠ACD,故B選項結(jié)論正確;∵DB=AB,∴△ABD是等腰三角形,故C選項結(jié)論正確;∵AD與AC不一定相等,∴△ACD不一定是等邊三角形,故D選項結(jié)論錯誤.故選D.10.D∵在△ABC中,∠ABC和∠ACB的平分線相交于點O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故A選項結(jié)論正確;∵在△ABC中,∠ABC和∠ACB的平分線相交于點O,∴∠OBC=12∠ABC,∠OCB=12∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(180°-∠A)=90°-12∠A,∴∠BOC=180°-(∠OBC+∠過點O作OM⊥AB于M,ON⊥BC于N,連接OA,如圖,∵在△ABC中,∠ABC和∠ACB的平分線相交于點O,∴ON=OD=OM,∴點O到△ABC各邊的距離相等,故C選項結(jié)論正確;∵OD=m,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=12AE·OM+12AF·OD=1211.(0,-2)解析∵點A(3,2)關于x軸的對稱點為A1,∴A1(3,-2),∵將點A1向左平移3個單位得到點A2,∴點A2的坐標為(0,-2).12.3解析將其中一個小方格涂陰影,使整個圖形為軸對稱圖形,這樣的軸對稱圖形有3個,如圖.13.12解析∵D為BC的中點,且BC=6,∴BD=12由折疊的性質(zhì)知NA=ND,則△DNB的周長=ND+NB+BD=NA+NB+BD=AB+BD=9+3=12.14.4解析過點D作DM⊥OB,垂足為M,如圖所示.∵OC是∠AOB的平分線,DE⊥OA,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案為4.15.54解析∵AF=EF,∴∠A=∠AEF,∵∠A+∠AEF=∠CFE=72°,∴∠A=12在Rt△ABC中,∠C=90°,∴∠B=90°-36°=54°.16.6解析如圖,連接CE交AD于點F,連接BF,∵△ABC是等邊三角形,∴BF=CF,∴BF+EF=CF+EF=CE,此時BF+EF的值最小,最小值為CE的長,∵D、E分別是△ABC中BC、AB邊的中點,∴AD=CE,∵AD=6,∴CE=6,∴BF+EF的最小值為6.17.等邊解析∵三角形ABC為等邊三角形,∴∠A=∠B=∠C=60°,根據(jù)題意知點B和點C經(jīng)過折疊后分別落在了點I和點H處,∴∠DIH=∠B=60°,∠GHI=∠C=60°,∴∠HJI=60°,∴∠DIH=∠GHI=∠HJI,∴陰影部分是等邊三角形,故答案為等邊.18.103解析分情況討論:①當點P在OA上時,如圖所示,△POQ是等腰三角形,PO=QO;∵PO=AO-AP=(10-2t)cm,OQ=tcm,∴10-2t=t,解得t=103②當點P在射線OB上時,如圖所示,△POQ是等腰三角形.∵∠BOC=60°,∴等腰△POQ是等邊三角形,∴PO=QO.∵PO=AP-AO=(2t-10)cm,OQ=tcm,∴2t-10=t,解得t=10.故當t=103或t=10時,△19.解析(1)如圖所示,△A1B1C1即為所求.(2)如圖所示,△A2B2C2即為所求.(3)A1(2,3),A2(-2,-1).20.解析如圖,延長AD交BC的延長線于點E.∵∠A=30°,∠B=90°,∴∠E=60°,AE=2BE,∵∠ADC=120°,∴∠EDC=60°,∴△EDC是等邊三角形.設CD=CE=DE=x,∵AD=4,BC=1,∴AE=x+4,BE=x+1,∴2(x+1)=x+4,解得x=2,∴CD=2.21.證明(1)∵AB=AC,∴∠ABE=∠ACF,在△ABE和△ACF中,AB∴△ABE≌△ACF(SAS).(2)∵△ABE≌△ACF,∴∠CAF=∠BAE=30°,∵AD=AC,∴∠ADC=∠ACD=75°,∴∠BAD=∠ADC,∴AB∥CD.22.解析(1)證明:∵AB=AC,∴∠ABC=∠ACB,在△DBE和△ECF中,BE∴△DBE≌△ECF(SAS),∴DE=EF,∴△DEF是等腰三角形.(2)∵△DBE≌△ECF,∴∠BDE=∠CEF,∠BED=∠CFE,∵∠A+∠B+∠C=180°,∠A=44°,∴∠B=12∴∠BDE+∠BED=112°,∴∠BED+∠CEF=112°,∴∠DEF=180°-112°=68°.23.解析(1)當∠A為頂角時,∠B=12當∠A為底角時,若∠B為頂角,則∠B=180°-80°-80°=20°,若∠B為底角,則∠B=∠A=80°,∴∠B的度數(shù)為50°或20°或80°.(2)分兩種情況:①當90≤x<180時,∠A只能為頂角,∴∠B的度數(shù)只有一個.②當0<x<90時,若∠A為頂角,則∠B=180-若∠A為底角,則∠B=x°或∠B=(180-2x)°,∴當180-x2≠180-2x且180綜上,當0<x<90且x≠60時,∠B有三個不同的度數(shù).24.解析(1)證明:∵△AOB,△CBD都是等邊三角形,∴OB=AB,CB=DB,∠ABO=∠DBC=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD,在△OBC和△ABD中,OB∴△OBC≌△ABD(SAS),∴OC=AD.(2)點C在運動過程中,∠CAD的度數(shù)不會發(fā)生變化.理由如下:∵△AOB是等邊三角形,∴∠BOA=∠OAB=60°,∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,∴∠CAD=180°-∠OAB-∠BAD=60°.(3)∵∠OAB=∠BAD=60°,∴∠OAE=180°-60°-60°=60°,∴∠EAC=120°,∠OEA=30°,∴以A,E,C為頂點的三角形是等腰三角形時,AE和AC是腰,∵A(1,0),∴OA=1,∵∠OEA=30°,∴AE=2OA=2,∴AC=AE=2,∴OC=OA+AC=1+2=3,∴當點C的坐標為(3,0)時,以A,E,C為頂點的三角形是等腰三角形.人教版八年級數(shù)學上冊第十三章軸對稱素養(yǎng)綜合測試題及答案一、選擇題(每小題3分,共30分)1.(2022獨家原創(chuàng))下圖是天氣預報中的圖形,其中是軸對稱圖形的為() A B C D2.(2022獨家原創(chuàng))如圖,在△ABC中,∠BAC=75°,∠ACB=35°,AC=8,∠ABC的平分線BD交邊AC于點D,則AD+BD的長為()A.10B.8C.6D.43.(2020湖南益陽中考)如圖,在△ABC中,AC的垂直平分線交AB于點D,交AC于點E,CD平分∠ACB,若∠A=50°,則∠B的度數(shù)為()A.25°B.30°C.35°D.40°4.(2021河北石家莊二十八中期中)如圖,△ABC中,點D在AC上,連接BD,∠ABD=2∠DBC,∠ADB=2∠C,∠DBC=∠A,則圖中共有等腰三角形()A.0個B.1個C.2個D.3個5.如圖,在棋盤中建立直角坐標系xOy,現(xiàn)將A,O,B三顆棋子分別放置在(-2,2),(0,0),(1,0)處.如果在其他格點位置添加一顆棋子P,使四顆棋子A,O,B,P成為軸對稱圖形,則滿足條件的棋子P的位置的坐標不正確的是()A.(-2,3)B.(-3,2)C.(-2,-2)D.(0,-1)6.(2020湖北宜昌中考)如圖,點E,F,G,Q,H在一條直線上,且EF=GH,我們知道按如圖所作的直線l為線段FG的垂直平分線.下列說法正確的是()A.l是線段EH的垂直平分線B.l是線段EQ的垂直平分線C.l是線段FH的垂直平分線D.EH是l的垂直平分線7.(2020山東濟南期末)如圖,在△ABC中,∠C=90°,∠A=15°,∠DBC=60°,BC=1,則AD的長為()A.1.5B.2C.3D.48.如圖,在△ABC中,AB=AC,∠C=70°,△AFG與△ABC關于直線DE成軸對稱,∠CAE=10°,連接BF,則∠ABF的度數(shù)是()A.30°B.35°C.40°D.45° 第8題圖 第9題圖9.如圖,在鈍角三角形ABC中,∠ABC為鈍角,以點B為圓心,AB的長為半徑畫弧,再以點C為圓心,AC的長為半徑畫弧,兩弧交于點D,連接AD,與CB的延長線交于點E.下列結(jié)論錯誤的是()A.CE垂直平分ADB.CE平分∠ACDC.△ABD是等腰三角形D.△ACD是等邊三角形10.(2021河南鄭州模擬)如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點O,過點O作EF∥BC交AB于E,交AC于F,過點O作OD⊥AC于D,下列選項中結(jié)論錯誤的是()A.EF=BE+CFB.∠BOC=90°+12∠C.點O到△ABC各邊的距離相等D.設OD=m,AE+AF=n,則S△AEF=mn二、填空題(每小題3分,共24分)11.(2021山東淄博中考)在直角坐標系中,點A(3,2)關于x軸的對稱點為A1,將點A1向左平移3個單位得到點A2,則點A2的坐標為.
12.(2022獨家原創(chuàng))如圖,在3×3的方格圖中,將其中一個小方格涂陰影,使整個圖形為軸對稱圖形,這樣的軸對稱圖形共有個.
13.(2022黑龍江齊齊哈爾三中期中)如圖,將△ABC折疊,使點A與BC邊中點D重合,折痕為MN,若AB=9,BC=6,則△DNB的周長為.
14.(2019湖南永州中考)已知∠AOB=60°,OC是∠AOB的平分線,點D為OC上一點,過D作直線DE⊥OA,垂足為點E,且直線DE交OB于點F,如圖所示.若DE=2,則DF=.
15.(2021江蘇蘇州中考)如圖,在Rt△ABC中,∠C=90°,AF=EF.若∠CFE=72°,則∠B=°.
16.(2022安徽蕪湖一中期末)如圖,已知點D、E分別是等邊三角形ABC中BC、AB邊的中點,AD=6,點F是線段AD上的動點,則BF+EF的最小值為.
17.如圖,已知D為等邊三角形紙片ABC的邊AB上的點,過點D作DG∥BC交AC于點G,DE⊥BC于點E,過點G作GF⊥BC于點F.把三角形紙片ABC分別沿DG,DE,GF按如圖所示的方式折疊,則圖中陰影部分是三角形.
18.(2021四川綿陽模擬)如圖,∠BOC=60°,點A是OB的反向延長線上的一點,OA=10cm,動點P從點A出發(fā)沿AB以2cm/s的速度移動,動點Q從點O出發(fā)沿OC以1cm/s的速度移動,如果點P、Q同時出發(fā),用t(s)表示移動的時間,當t=時,△POQ是等腰三角形.
三、解答題(共46分)19.(2019廣西中考)(6分)如圖,在平面直角坐標系中,已知△ABC的三個頂點坐標分別是A(2,-1),B(1,-2),C(3,-3).(1)將△ABC向上平移4個單位長度得到△A1B1C1,請畫出△A1B1C1;(2)請畫出與△ABC關于y軸對稱的△A2B2C2;(3)請寫出A1、A2的坐標.20.(6分)如圖,四邊形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC=120°,求CD的長.21.(2022浙江溫州期末)(8分)如圖,在△ABC中,AB=AC,點E,F在邊BC上,BE<BF.已知BE=CF.(1)求證:△ABE≌△ACF;(2)若點D在AF的延長線上,AD=AC,∠BAE=30°,∠BAD=75°,求證:AB∥DC.22.(8分)如圖,在△ABC中,AB=AC,點D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.(1)求證:△DEF是等腰三角形;(2)當∠A=44°時,求∠DEF的度數(shù).23.(2018浙江紹興中考)(8分)數(shù)學課上,張老師舉了下面的例題:例1等腰三角形ABC中,∠A=110°,求∠B的度數(shù).(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度數(shù).(答案:40°或70°或100°)張老師啟發(fā)同學們進行變式,小敏編了如下一題:變式等腰三角形ABC中,∠A=80°,求∠B的度數(shù).(1)請你解答以上的變式題;(2)解(1)后,小敏發(fā)現(xiàn),∠A的度數(shù)不同,得到∠B的度數(shù)的個數(shù)也可能不同,如果在等腰三角形ABC中,設∠A=x°,當∠B有三個不同的度數(shù)時,請你探索x的取值范圍.24.(10分)如圖,在平面直角坐標系中,點A的坐標為(1,0),以線段OA為邊在第四象限內(nèi)作等邊三角形AOB,點C為x軸正半軸上一動點(OC>1),連接BC,以線段BC為邊在第四象限內(nèi)作等邊三角形CBD,連接DA并延長,交y軸于點E.(1)求證:OC=AD;(2)在點C的運動過程中,∠CAD的度數(shù)是否會變化?如果不變,請求出∠CAD的度數(shù);如果改變,請說明理由;(3)當點C運動到什么位置時,以A、E、C為頂點的三角形是等腰三角形?
答案全解全析1.C根據(jù)軸對稱圖形的定義可知,選項A中的圖形不是軸對稱圖形,選項B中的圖形不是軸對稱圖形,選項C中的圖形是軸對稱圖形,選項D中的圖形不是軸對稱圖形.故選C.2.B在△ABC中,∠BAC=75°,∠ACB=35°,∴∠ABC=180°-∠BAC-∠ACB=70°,∵BD平分∠ABC,∴∠DBC=12∠∴∠DBC=∠ACB,∴BD=CD,∴AD+BD=AD+CD=AC=8.故選B.3.B∵DE垂直平分AC,∴AD=CD,∴∠ACD=∠A=50°,又∵CD平分∠ACB,∴∠ACB=2∠ACD=100°,∴∠B=180°-∠A-∠ACB=180°-50°-100°=30°,故選B.4.D圖中共有等腰三角形3個.∵∠ADB=∠C+∠DBC,∠ADB=2∠C,∴∠DBC=∠C,∴△BCD是等腰三角形,∵∠ABD=2∠DBC,∴∠ABD=∠ADB,∴△ABD是等腰三角形,∵∠DBC=∠A,∴∠A=∠C,∴△ABC是等腰三角形,故選D.5.B滿足條件的點P的位置如圖所示,點P的坐標為(-2,3)或(3,2)或(-2,-2)或(0,-1),故選B.6.A設直線l與FG交于點O(圖略),∵直線l為線段FG的垂直平分線,∴FO=GO,l⊥FG,∵EF=GH,∴EF+FO=GH+OG,即EO=OH,∴l(xiāng)為線段EH的垂直平分線,故選項A正確;∵EO≠OQ,∴l(xiāng)不是線段EQ的垂直平分線,故選項B錯誤;∵FO≠OH,∴l(xiāng)不是線段FH的垂直平分線,故選項C錯誤;∵l為直線,直線沒有垂直平分線,∴EH不能平分直線l,故選項D錯誤.故選A.7.B∵∠DBC=60°,∠C=90°,∴∠BDC=90°-60°=30°,∴BD=2BC=2×1=2,∵∠C=90°,∠A=15°,∴∠ABC=90°-15°=75°,∴∠ABD=∠ABC-∠DBC=75°-60°=15°,∴∠ABD=∠A,∴AD=BD=2.故選B.8.C∵△AFG與△ABC關于直線DE成軸對稱,∴△AFG≌△ABC,∠GAE=∠CAE=10°,∴∠GAF=∠CAB,AB=AF,∵AB=AC,∠C=70°,∴∠ABC=∠ACB=70°,∴∠GAF=∠BAC=40°,∴∠BAF=40°+10°+10°+40°=100°,∵AB=AF,∴∠ABF=∠AFB=40°.故選C.9.D由題意可得CA=CD,BA=BD,∴直線CB是AD的垂直平分線,即CE垂直平分AD,故A選項結(jié)論正確;∵AC=DC,CE⊥AD,∴∠ACE=∠DCE,即CE平分∠ACD,故B選項結(jié)論正確;∵DB=AB,∴△ABD是等腰三角形,故C選項結(jié)論正確;∵AD與AC不一定相等,∴△ACD不一定是等邊三角形,故D選項結(jié)論錯誤.故選D.10.D∵在△ABC中,∠ABC和∠ACB的平分線相交于點O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故A選項結(jié)論正確;∵在△ABC中,∠ABC和∠ACB的平分線相交于點O,∴∠OBC=12∠ABC,∠OCB=12∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(180°-∠A)=90°-12∠A,∴∠BOC=180°-(∠OBC+∠過點O作OM⊥AB于M,ON⊥BC于N,連接OA,如圖,∵在△ABC中,∠ABC和∠ACB的平分線相交于點O,∴ON=OD=OM,∴點O到△ABC各邊的距離相等,故C選項結(jié)論正確;∵OD=m,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=12AE·OM+12AF·OD=1211.(0,-2)解析∵點A(3,2)關于x軸的對稱點為A1,∴A1(3,-2),∵將點A1向左平移3個單位得到點A2,∴點A2的坐標為(0,-2).12.3解析將其中一個小方格涂陰影,使整個圖形為軸對稱圖形,這樣的軸對稱圖形有3個,如圖.13.12解析∵D為BC的中點,且BC=6,∴BD=12由折疊的性質(zhì)知NA=ND,則△DNB的周長=ND+NB+BD=NA+NB+BD=AB+BD=9+3=12.14.4解析過點D作DM⊥OB,垂足為M,如圖所示.∵OC是∠AOB的平分線,DE⊥OA,∴DM=DE=2.在Rt△OEF中,∠OEF=90°,∠EOF=60°,∴∠OFE=30°,即∠DFM=30°.在Rt△DMF中,∠DMF=90°,∠DFM=30°,∴DF=2DM=4.故答案為4.15.54解析∵AF=EF,∴∠A=∠AEF,∵∠A+∠AEF=∠CFE=72°,∴∠A=12在Rt△ABC中,∠C=90°,∴∠B=90°-36°=54°.16.6解析如圖,連接CE交AD于點F,連接BF,∵△ABC是等邊三角形,∴BF=CF,∴BF+EF=CF+EF=CE,此時BF+EF的值最小,最小值為CE的長,∵D、E分別是△ABC中BC、AB邊的中點,∴AD=CE,∵AD=6,∴CE=6,∴BF+EF的最小值為6.17.等邊解析∵三角形ABC為等邊三角形,∴∠A=∠B=∠C=60°,根據(jù)題意知點B和點C經(jīng)過折疊后分別落在了點I和點H處,∴∠DIH=∠B=60°,∠GHI=∠C=60°,∴∠HJI=60°,∴∠DIH=∠GHI=∠HJI,∴陰影部分是等邊三角形,故答案為等邊.18.103解析分情況討論:①當點P在OA上時,如圖所示,△POQ是等腰三角形,PO=QO;∵PO=AO-AP=(10-2t)cm,OQ=tcm,∴10-2t=t,解得t=103②當點P在射線OB上時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國北京酒店行業(yè)市場調(diào)查研究及投資前景展望報告
- 2025-2030年中國涂裝粉末項目投資可行性研究分析報告
- 電器安裝維護修理行業(yè)深度研究報告
- 中國旅游度假村行業(yè)市場深度研究及投資戰(zhàn)略規(guī)劃報告
- 環(huán)保局“十三五”規(guī)劃中期評估報告
- 2025年半導體封裝用引線框架行業(yè)市場調(diào)研報告
- 中小微企業(yè)調(diào)研報告-1
- 蕪湖橡膠助劑項目經(jīng)營分析報告
- 2025年電機轉(zhuǎn)子軸項目可行性研究報告
- 臺式繁用表行業(yè)深度研究報告
- 模糊多屬性決策方法及其在物流服務供應鏈管理中的應用研究
- 2024年廣東省《輔警招聘考試必刷500題》考試題庫含答案
- 國家科技安全教學課件
- DB3301T 1088-2018 杭州龍井茶栽培技術規(guī)范
- 2010浙G22 先張法預應力混凝土管樁
- 安徽省部分省示范中學2025屆高三第一次模擬考試英語試卷含解析
- 工程機械租賃服務方案及保障措施 (二)
- 國網(wǎng)基建安全管理課件
- 部編版初中語文7-9年級教材必背古詩詞、古文99篇詳細解析及欣賞
- DB36T 1393-2021 生產(chǎn)安全風險分級管控體系建設通則
- 檔案三合一制度培訓
評論
0/150
提交評論