




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1.3全概率公式【學(xué)習(xí)目標(biāo)】1.結(jié)合古典概型,了解利用概率的加法公式和乘法公式推導(dǎo)出全概率公式的過程.2.結(jié)合古典概型,會(huì)利用全概率公式計(jì)算概率.*3.了解貝葉斯公式.4.通過學(xué)習(xí),培養(yǎng)學(xué)生數(shù)學(xué)建模、數(shù)學(xué)運(yùn)算的核心素養(yǎng).◆知識(shí)點(diǎn)一全概率公式設(shè)B1,B2,…,Bn為樣本空間Ω的一個(gè)劃分,若P(Bi)>0(i=1,2,…,n),則對(duì)任意一個(gè)事件A有P(A)=∑i=1nP(Bi)P(A|B【診斷分析】判斷正誤.(請(qǐng)?jiān)诶ㄌ?hào)中打“√”或“×”)(1)全概率公式中,B1,B2,…,Bn必須是一組兩兩互斥的事件. ()(2)全概率公式P(B)=P(A)P(B|A)+P(A)·P(B|A)是將樣本空間分成對(duì)立的兩部分后得到的. ()*◆知識(shí)點(diǎn)二貝葉斯公式設(shè)B1,B2,…,Bn為樣本空間Ω的一個(gè)劃分,若P(A)>0,P(Bi)>0(i=1,2,…,n),則P(Bi|A)=P(B◆探究點(diǎn)一全概率公式例1某考生回答一道四選一的考題,假設(shè)他知道正確答案的概率為0.5,知道正確答案時(shí),答對(duì)的概率為1,而不知道正確答案時(shí)猜對(duì)的概率為0.25,求他答對(duì)該道題目的概率.變式1[2024·山西運(yùn)城芮城中學(xué)高二期末]某高校有橘園、桃園、李園3個(gè)食堂,根據(jù)大數(shù)據(jù)統(tǒng)計(jì)分析,某天上午下課后,進(jìn)入橘園、桃園、李園食堂的學(xué)生人數(shù)分別占40%,35%,25%,但因?yàn)楦鞣N原因,進(jìn)入橘園、桃園、李園食堂的學(xué)生中有一些同學(xué)未用餐,而選擇出校就餐.其中進(jìn)入橘園、桃園食堂未用餐而選擇出校就餐的學(xué)生人數(shù)分別占2%,3%.現(xiàn)從在校學(xué)生中任選一位學(xué)生,若發(fā)現(xiàn)這位學(xué)生出校就餐的概率為2.5%,則推測進(jìn)入李園食堂中但未用餐而選擇出校就餐的學(xué)生人數(shù)占 ()A.2.3% B.2.4%C.2.5% D.2.6%變式2在A,B,C三個(gè)地區(qū)爆發(fā)了流感,這三個(gè)地區(qū)分別有6%,5%,4%的人患了流感,假設(shè)這三個(gè)地區(qū)的人口數(shù)量之比為3∶5∶2,現(xiàn)從這三個(gè)地區(qū)中任意選取一個(gè)人,則這個(gè)人患流感的概率為.
[素養(yǎng)小結(jié)]全概率公式針對(duì)的是某一個(gè)過程中已知條件求結(jié)果發(fā)生的概率,解題步驟如下:(1)按照某種標(biāo)準(zhǔn)求樣本空間Ω的一個(gè)劃分B1,B2,…,Bn;(2)求P(Bi)(i=1,2,…,n);(3)求P(A|Bi)(i=1,2,…,n);(4)代入全概率公式求目標(biāo)事件的概率P(A).◆探究點(diǎn)二多個(gè)事件的全概率問題例2某支足球隊(duì)根據(jù)以往的數(shù)據(jù)統(tǒng)計(jì)發(fā)現(xiàn),乙球員能夠勝任前鋒、中鋒、后衛(wèi)以及守門員四個(gè)位置,且出場率分別為0.2,0.5,0.2,0.1,當(dāng)乙球員擔(dān)當(dāng)前鋒、中鋒、后衛(wèi)以及守門員時(shí),球隊(duì)輸球的概率依次為0.4,0.2,0.6,0.2.則當(dāng)乙球員參加比賽時(shí),求該球隊(duì)某場比賽不輸球的概率.變式(1)某乒乓球訓(xùn)練館使用的球是A,B,C三種不同品牌的標(biāo)準(zhǔn)比賽球,根據(jù)以往使用的記錄數(shù)據(jù)得到下表:品牌名稱合格率占總數(shù)的比例A98%0.2B99%0.6C97%0.2若這些球在盒子中是均勻混合的,且無區(qū)別的標(biāo)志,現(xiàn)從盒子中隨機(jī)地取出一只球用于訓(xùn)練,則它是合格品的概率為 ()A.0.986 B.0.984 C.0.982 D.0.980(2)有3臺(tái)車床加工同一型號(hào)的零件,第1臺(tái)車床加工的次品率為6%,第2,3臺(tái)車床加工的次品率均為5%.加工出來的零件混放在一起,且第1,2,3臺(tái)車床加工的零件數(shù)分別占總數(shù)的25%,30%,45%.現(xiàn)從加工出來的零件中任取一個(gè)零件,則取到的零件是次品的概率為.
[素養(yǎng)小結(jié)]全概率公式的應(yīng)用較廣,它的基本思路是將一個(gè)比較復(fù)雜的事件分解成若干個(gè)較簡單且兩兩互斥的事件的和,然后利用互斥事件的概率加法公式與乘法公式來計(jì)算.事件A發(fā)生的全概率公式為P(A)=P(A|B1)P(B1)+P(A|B2)P(B2)+…+P(A|Bn)P(Bn),即A在事件B1發(fā)生的條件下的條件概率與B1發(fā)生的概率乘積,A在事件B2發(fā)生的條件下的條件概率與B2發(fā)生的概率乘積,…,A在事件Bn發(fā)生的條件下的條件概率與Bn發(fā)生的概率乘積的和.拓展為了弘揚(yáng)頑強(qiáng)拼搏的體育競技精神,某學(xué)校的足球社團(tuán)利用課余時(shí)間開展“三人足球”的比賽,比賽的第一階段為“傳球訓(xùn)練賽”,即參賽的甲、乙、丙三名同學(xué)第一次傳球從乙開始,隨機(jī)地傳球給其他兩人中的任意一人,接球者再隨機(jī)地將球傳給其他兩人中的任意一人,則第6次傳球重新由乙同學(xué)傳球的概率為.
*◆探究點(diǎn)三貝葉斯公式例3設(shè)某公路上經(jīng)過的貨車與客車的數(shù)量之比為2∶1,貨車中途停車修理的概率為0.02,客車中途停車修理的概率為0.01.今有一輛汽車中途停車修理,則該汽車是貨車的概率為.
[素養(yǎng)小結(jié)]貝葉斯公式針對(duì)的是某一個(gè)過程中已知結(jié)果發(fā)生求事件過程中某個(gè)條件成立的概率,解題步驟如下:(1)按照某種標(biāo)準(zhǔn)求樣本空間Ω的一個(gè)劃分B1,B2,…,Bn;(2)命名已知會(huì)發(fā)生的結(jié)果為事件A;(3)分別計(jì)算P(Bi),P(A|Bi),i=1,2,…,n;(4)代入貝葉斯公式P(Bi|A)=P(Bi)P(1.3全概率公式【課前預(yù)習(xí)】知識(shí)點(diǎn)一診斷分析(1)√(2)√【課中探究】例1解:用事件A表示“該考生答對(duì)該題”,用事件B表示“該考生知道正確答案”,用事件B表示“該考生不知道正確答案”,則P(B)=0.5,P(B)=0.5,P(A|B)=1,P(A|B)=0.25,則P(A)=P(A|B)P(B)+P(A|B)P(B)=1×0.5+0.25×0.5=0.625.變式1D[解析]設(shè)A表示出校就餐,A1,A2,A3分別表示進(jìn)入橘園、桃園、李園食堂未用餐而選擇出校就餐,B1,B2,B3分別表示進(jìn)入橘園、桃園、李園食堂.由全概率公式得P(A)=P(A1|B1)P(B1)+P(A2|B2)P(B2)+P(A3|B3)P(B3),即2.5%=2%×40%+3%×35%+P(A3|B3)×25%,解得P(A3|B3)=2.6%,故選D.變式20.051[解析]設(shè)此人來自A,B,C三個(gè)地區(qū)分別為事件A,B,C,事件D為這個(gè)人患流感,所以P(A)=0.3,P(B)=0.5,P(C)=0.2,P(D|A)=0.06,P(D|B)=0.05,P(D|C)=0.04,因此P(D)=P(A)P(D|A)+P(B)P(D|B)+P(C)P(D|C)=0.3×0.06+0.5×0.05+0.2×0.04=0.051.例2解:設(shè)事件A1表示“乙球員擔(dān)當(dāng)前鋒”,事件A2表示“乙球員擔(dān)當(dāng)中鋒”,事件A3表示“乙球員擔(dān)當(dāng)后衛(wèi)”,事件A4表示“乙球員擔(dān)當(dāng)守門員”,事件B表示“當(dāng)乙球員參加比賽時(shí),球隊(duì)輸球”,則P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)+P(A4)P(B|A4)=0.2×0.4+0.5×0.2+0.2×0.6+0.1×0.2=0.32,所以當(dāng)乙球員參加比賽時(shí),該球隊(duì)某場比賽不輸球的概率為1-0.32=0.68.變式(1)B(2)0.0525[解析](1)將A,B,C三種品牌分別記為第1,2,3個(gè)品牌,設(shè)事件Mi表示“取到的球是第i(i=1,2,3)個(gè)品牌”,事件N表示“取到的一個(gè)球是合格品”,所以P(N)=P(M1)P(N|M1)+P(M2)P(N|M2)+P(M3)P(N|M3)=0.98×0.2+0.99×0.6+0.97×0.2=0.984.故選B.(2)設(shè)B表示“取到的一個(gè)零件為次品”,Ai表示“零件為第i(i=1,2,3)臺(tái)車床加工出來的”,所以P(A1)=0.25,P(A2)=0.3,P(A3)=0.45,P(B|A1)=0.06,P(B|A2)=P(B|A3)=0.05.由全概率公式得P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=0.25×0.06+0.3×0.05+0.45×0.05=0.0525.拓展516[解析]設(shè)第n次傳球重新由乙同學(xué)傳球的概率為Pn,則P1=1,P2=(1-P1)×12=0,P3=(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 戀愛階段財(cái)產(chǎn)管理與婚姻規(guī)劃協(xié)議
- 出租車公司員工福利合作協(xié)議
- Brand KPIs for hotels:Fiesta Inn in Mexico-英文培訓(xùn)課件2025.5
- 2025年地質(zhì)與資源勘探考試試題及答案
- 2025年公共英語等級(jí)考試試題及答案
- 標(biāo)準(zhǔn)的研制與編制-廣東開放大學(xué)考試題庫及答案
- 2025年城市規(guī)劃專業(yè)研究生考試試題及答案
- 一年級(jí)數(shù)學(xué)教學(xué)方案(32篇)
- 企業(yè)常年財(cái)務(wù)顧問與內(nèi)部審計(jì)協(xié)議
- 餐飲行業(yè)供應(yīng)鏈保密合同模板
- 2025年動(dòng)物科學(xué)與技術(shù)應(yīng)用考試卷及答案
- 天津市2024-2025學(xué)年七年級(jí)語文下學(xué)期期末模擬試題(含答案)
- 2025年初中地理學(xué)業(yè)水平考試人文地理專項(xiàng)試題及答案深度解析
- 礦山租賃合同協(xié)議書模板
- 教育技術(shù)變革下的課堂教學(xué)數(shù)字化轉(zhuǎn)型路徑探究
- (人教PEP版2025新教材)英語三下期末分單元復(fù)習(xí)課件
- 醫(yī)療行業(yè)變革下的職業(yè)轉(zhuǎn)型策略
- 2025年大數(shù)據(jù)分析師中級(jí)職稱考試試題集
- 裝修公司分公司合同協(xié)議
- 2025年全國低壓電工證理論考試練習(xí)題庫(含答案)
- 專題學(xué)習(xí)《2030年前碳達(dá)峰行動(dòng)方案》課件全文
評(píng)論
0/150
提交評(píng)論