![淮北市重點中學2025屆數(shù)學高二上期末經(jīng)典試題含解析_第1頁](http://file4.renrendoc.com/view14/M04/00/25/wKhkGWcGzVaAdqoWAAHeMIdhIjs531.jpg)
![淮北市重點中學2025屆數(shù)學高二上期末經(jīng)典試題含解析_第2頁](http://file4.renrendoc.com/view14/M04/00/25/wKhkGWcGzVaAdqoWAAHeMIdhIjs5312.jpg)
![淮北市重點中學2025屆數(shù)學高二上期末經(jīng)典試題含解析_第3頁](http://file4.renrendoc.com/view14/M04/00/25/wKhkGWcGzVaAdqoWAAHeMIdhIjs5313.jpg)
![淮北市重點中學2025屆數(shù)學高二上期末經(jīng)典試題含解析_第4頁](http://file4.renrendoc.com/view14/M04/00/25/wKhkGWcGzVaAdqoWAAHeMIdhIjs5314.jpg)
![淮北市重點中學2025屆數(shù)學高二上期末經(jīng)典試題含解析_第5頁](http://file4.renrendoc.com/view14/M04/00/25/wKhkGWcGzVaAdqoWAAHeMIdhIjs5315.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
淮北市重點中學2025屆數(shù)學高二上期末經(jīng)典試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.現(xiàn)從名男醫(yī)生和名女醫(yī)生中抽取兩人加入“援鄂醫(yī)療隊”,用表示事件“抽到的兩名醫(yī)生性別相同”,表示事件“抽到的兩名醫(yī)生都是女醫(yī)生”,則()A. B.C. D.2.等差數(shù)列的首項為正數(shù),其前n項和為.現(xiàn)有下列命題,其中是假命題的有()A.若有最大值,則數(shù)列的公差小于0B.若,則使的最大的n為18C.若,,則中最大D.若,,則數(shù)列中的最小項是第9項3.已知函數(shù),當時,函數(shù)在,上均為增函數(shù),則的取值范圍是A. B.C. D.4.把直線繞原點逆時針轉動,使它與圓相切,則直線轉動的最小正角度A. B.C. D.5.已知雙曲線E的漸近線為,則其離心率為()A. B.C. D.或6.在正三棱錐S-ABC中,AB=4,D、E分別是SA、AB中點,且DE⊥CD,則三棱錐S-ABC外接球的體積為()A.π B.πC.π D.π7.下列有關命題的表述中,正確的是()A.命題“若是偶數(shù),則,都是偶數(shù)”的否命題是假命題B.命題“若為正無理數(shù),則也是無理數(shù)”的逆命題是真命題C.命題“若,則”的逆否命題為“若,則”D.若命題“”,“”均為假命題,則,均為假命題8.已知函數(shù),若對任意兩個不等的正數(shù),,都有恒成立,則a的取值范圍為()A. B.C. D.9.已知角的終邊經(jīng)過點,則,的值分別為A., B.,C., D.,10.已知拋物線的方程為,則此拋物線的準線方程為()A. B.C. D.11.“”是“直線與直線垂直”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.若直線與曲線只有一個公共點,則m的取值范圍是()A. B.C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.在等差數(shù)列中,,公差,則_________14.若數(shù)列滿足,則稱為“追夢數(shù)列”.已知數(shù)列為“追夢數(shù)列”,且,則數(shù)列的通項公式__________.15.已知函數(shù)若存在,使得成立,則實數(shù)的取值范圍是_______________16.已知,若在區(qū)間上有且只有一個極值點,則a的取值范圍是______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的中心在原點,焦點為,,且長軸長為4.(1)求橢圓的方程;(2)直線與橢圓相交于A,兩點,求弦長.18.(12分)在數(shù)列中,,是與的等差中項,(1)求證:數(shù)列是等差數(shù)列(2)令,求數(shù)列的前項的和19.(12分)已知拋物線C:上有一動點,,過點P作拋物線C的切線交y軸于點Q(1)判斷線段PQ的垂直平分線是否過定點?若過,求出定點坐標;若不過,請說明理由;(2)過點P作垂線交拋物線C于另一點M,若切線的斜率為k,設的面積為S,求的最小值20.(12分)某餐館將推出一種新品特色菜,為更精準確定最終售價,這種菜按以下單價各試吃1天,得到如下數(shù)據(jù):(1)求銷量關于的線性回歸方程;(2)預計今后的銷售中,銷量與單價服從(1)中的線性回歸方程,已知每份特色菜的成本是15元,為了獲得最大利潤,該特色菜的單價應定為多少元?(附:,)21.(12分)已知數(shù)列的前n項和為,,,其中.(1)記,求證:是等比數(shù)列;(2)設,數(shù)列的前n項和為,求證:.22.(10分)已知函數(shù).若函數(shù)有兩個極值點,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】先求出抽到的兩名醫(yī)生性別相同的事件的概率,再求抽到的兩名醫(yī)生都是女醫(yī)生事件的概率,然后代入條件概率公式即可【詳解】解:由已知得,,則,故選:A【點睛】此題考查條件概率問題,屬于基礎題2、B【解析】由有最大值可判斷A;由,可得,,利用可判斷BC;,得,,可判斷D.【詳解】對于選項A,∵有最大值,∴等差數(shù)列一定有負數(shù)項,∴等差數(shù)列為遞減數(shù)列,故公差小于0,故選項A正確;對于選項B,∵,且,∴,,∴,,則使的最大的n為17,故選項B錯誤;對于選項C,∵,,∴,,故中最大,故選項C正確;對于選項D,∵,,∴,,故數(shù)列中的最小項是第9項,故選項D正確.故選:B.3、A【解析】由,函數(shù)在上均為增函數(shù),恒成立,,設,則,又設,則滿足線性約束條件,畫出可行域如圖所示,由圖象可知在點取最大值為,在點取最小值.則的取值范圍是,故答案選A考點:利用導數(shù)研究函數(shù)的性質,簡單的線性規(guī)劃4、B【解析】根據(jù)直線過原點且與圓相切,求出直線的斜率,再數(shù)形結合計算最小旋轉角【詳解】解析:由題意,設切線為,∴.∴或.∴時轉動最小∴最小正角為.故選B.【點睛】本題考查直線與圓的位置關系,屬于基礎題5、D【解析】根據(jù)雙曲線標準方程與漸近線的關系即可求解.【詳解】當雙曲線焦點在x軸上時,漸近線為,故離心率為;當雙曲線焦點在y軸上時,漸近線為,故離心率為;故選:D.6、C【解析】取中點,連接,證明平面,得證,然后證明平面,得兩兩垂直,以為棱把三棱錐補成一個正方體,正方體的對角線是其外接球的直徑,而正方體的外接球也是正三棱錐的外接球,由此計算可得【詳解】取中點,連接,則,,,平面,所以平面,又平面,所以,D、E分別是SA、AB的中點,則,又,所以,,平面,所以平面,而平面,所以,,是正三棱錐,因此,因此可以為棱把三棱錐補成一個正方體,正方體的對角線是其外接球的直徑,而正方體的外接球也是正三棱錐的外接球,由,得,所以所求外接球直徑為,半徑為,球體積為故選:C7、C【解析】對于選項A:根據(jù)偶數(shù)性質即可判斷;對于選項B:通過舉例即可判斷,對于選項C:利用逆否命題的概念即可判斷;對于選項D:根據(jù)且、或和非的關系即可判斷.【詳解】選項A:原命題的否命題為:若不是偶數(shù),則,不都是偶數(shù),若,都是偶數(shù),則一定是偶數(shù),從而原命題的否命題為真命題,故A錯誤;選項B:原命題的逆命題:若是無理數(shù),則也為正無理數(shù),當,即為無理數(shù),但是有理數(shù),故B錯誤;選項C:由逆否命題的概念可知,C正確;選項D:由為假命題可知,,至少有一個為假命題,由為假命題可知,和均為假命題,故為假命題,為真命題,故D錯誤.故選:C.8、A【解析】將已知條件轉化為時恒成立,利用參數(shù)分離的方法求出a的取值范圍【詳解】對任意都有恒成立,則時,,當時恒成立,
,當時恒成立,,故選:A9、C【解析】利用任意角的三角函數(shù)的定義:,,,代入計算即可得到答案【詳解】由于角的終邊經(jīng)過點,則,,(為坐標原點),所以由任意角的三角函數(shù)的定義:,.故答案選C【點睛】本題考查任意角的三角函數(shù)的定義,解決此類問題的關鍵是掌握牢記三角函數(shù)定義并能夠熟練應用,屬于基礎題10、A【解析】由拋物線的方程直接寫出其準線方程即可.【詳解】由拋物線的方程為,則其準線方程為:故選:A11、A【解析】求出兩直線垂直的充要條件后再根據(jù)充分必要條件的定義判斷.【詳解】由,得,即或所以,反之,則不然所以“”是“直線與直線垂直”的充分不必要條件.故選:A12、D【解析】根據(jù)曲線方程的特征,發(fā)現(xiàn)曲線表示在軸上方的圖象,畫出圖形,根據(jù)圖形上直線的三個特殊位置,當已知直線位于直線位置時,把已知直線的解析式代入橢圓方程中,消去得到關于的一元二次方程,由題意可知根的判別式等于0即可求出此時對應的的值;當已知直線位于直線及直線的位置時,分別求出對應的的值,寫出滿足題意得的范圍,綜上,得到所有滿足題意得的取值范圍【詳解】根據(jù)曲線,得到,解得:;,畫出曲線的圖象,為橢圓在軸上邊的一部分,如圖所示:當直線在直線的位置時,直線與橢圓相切,故只有一個交點,把直線代入橢圓方程得:,得到,即,化簡得:,解得或(舍去),則時,直線與曲線只有一個公共點;當直線在直線位置時,直線與曲線剛好有兩個交點,此時,當直線在直線位置時,直線與曲線只有一個公共點,此時,則當時,直線與曲線只有一個公共點,綜上,滿足題意得的范圍是或故選:D二、填空題:本題共4小題,每小題5分,共20分。13、15【解析】由等差數(shù)列通項公式直接可得.【詳解】.故答案為:1514、##【解析】根據(jù)題意,由“追夢數(shù)列”的定義可得“追夢數(shù)列”是公比為的等比數(shù)列,進而可得若數(shù)列為“追夢數(shù)列”,則為公比為3的等比數(shù)列,進而由等比數(shù)列的通項公式可得答案【詳解】根據(jù)題意,“追夢數(shù)列”滿足,即,則數(shù)列是公比為的等比數(shù)列.若數(shù)列為“追夢數(shù)列”,則.故答案為:.15、【解析】分離參數(shù)法得到能成立,構造函數(shù),求出的最小值,即可求出實數(shù)a的取值范圍.【詳解】由得.設,則存在,使得成立,即能成立,所以能成立,所以.又令,由對勾函數(shù)的性質可得:在上,t(x)單調(diào)遞增,所以當x=2時,t有最小值,所以實數(shù)a的取值范圍是.故答案為:【點睛】導數(shù)的應用主要有:(1)利用導函數(shù)幾何意義求切線方程;(2)利用導數(shù)研究原函數(shù)的單調(diào)性,求極值(最值);(3)利用導數(shù)求參數(shù)的取值范圍.16、【解析】求導得,進而根據(jù)題意在上有且只有一個變號零點,再根據(jù)零點的存在性定理求解.【詳解】解:,∵在區(qū)間上有且只有一個極值點,∴在上有且只有一個變號零點,∴,解得∴a的取值范圍是.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由已知直接可得;(2)聯(lián)立方程組求出A,兩點坐標,再由兩點間距離公式可得.【小問1詳解】∵橢圓的中心在原點,焦點為,且長軸長為4,,,,故橢圓的方程為;【小問2詳解】設,聯(lián)立解得和,,∴弦長.18、(1)證明見解析;(2).【解析】(1)求得,利用等差數(shù)列的定義可證得結論成立;(2)求出,可計算得出,利用并項求和法可求得數(shù)列的前項的和.小問1詳解】解:由題意知是與的等差中項,可得,可得,則,可得,所以,,又由,可得,所以數(shù)列是首項和公差均為的等差數(shù)列.【小問2詳解】解:由(1)可得:,,對任意的,,因此,.19、(1)線段的垂直平分線過定點(2)【解析】(1)設切線的方程為,并與拋物線方程聯(lián)立,利用判別式求得點坐標,進而求得點坐標,從而求得線段的垂直平分線的方程,進而求得定點坐標.(2)結合弦長公式求得的面積,利用基本不等式求得的最小值.【小問1詳解】依題意可知切線的斜率存在,且斜率大于.設直線PQ的方程為,.由消去并化簡得,由得,,則,解得,所以,在中,令得,所以,PQ中點為,所以線段PQ的中垂線方程為,即,所以線段的垂直平分線過定點.【小問2詳解】由(1)可知,直線PM的方程為,即.由消去并化簡得:,所以,而,所以得,,,.所以的面積,所以.當且僅當時等號成立.所以的最小值為.20、(1)(2)24【解析】(1)求出,的值,根據(jù)公式求出的值,代入公式即可求出回歸直線方程(2)根據(jù)(1)的結論,求出利潤,根據(jù)二次函數(shù)的性質,即可求解【詳解】解:(1)由題意得,,,,得,,所以關于的線性回歸方程為:.(2)由題意得,每份菜獲得的利潤,∴當時,取最大值,∴單價應定為24元,可獲得最大利潤.【點睛】本題考查回歸直線的求法與應用,著重考查計算化簡的能力,屬基礎題21、(1)證明見解析;(2)證明見解析.【解析】(1)應用的關系,結合構造法可得,根據(jù)已知條件及等比數(shù)列的定義即可證結論.(2)由(1)得,再應用錯位相減法求,即可證結論.【小問1詳解】證明:對任意的,,,時,,解得,時,因為,,兩式相減可得:,即有,∴,又,則,因為,,所以,對任意的,,所以,因此,是首項和公比均為3的等比數(shù)列【小問2詳解】由(1)得:,則,,,兩式相減得:,化簡可得:,又,∴.22、.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學年高中歷史 第一單元 古代中國經(jīng)濟的基本結構與特點 第1課 發(fā)達的古代農(nóng)業(yè)新課說課稿1 新人教版必修2
- Unit 4 There are seven days in a week. Lesson 19(說課稿)-2023-2024學年人教精通版英語四年級下冊
- Unit 1 Teenage Life Listening and Speaking 說課稿 -2024-2025學年高中英語人教版2019 必修第一冊001
- 2024年春七年級語文下冊 第3單元 10 老王說課稿 新人教版
- Unit 5 Working the Land Reading and thinking 說課稿-2024-2025學年高二英語人教版(2019)選擇性必修第一冊
- 農(nóng)田整改合同范本
- 作品出版合同范例
- 鄭州水泥化糞池施工方案
- 關于活動執(zhí)行合同范本
- 加盟區(qū)域保護合同范例
- 測繪工程產(chǎn)品價格表匯編
- 拘留所教育課件02
- 語言和語言學課件
- 《工作場所安全使用化學品規(guī)定》
- 裝飾圖案設計-裝飾圖案的形式課件
- 2022年菏澤醫(yī)學??茖W校單招綜合素質考試筆試試題及答案解析
- 護理學基礎教案導尿術catheterization
- ICU護理工作流程
- 廣東版高中信息技術教案(全套)
- 市政工程設施養(yǎng)護維修估算指標
- 分布式光伏屋頂調(diào)查表
評論
0/150
提交評論