江蘇省鎮(zhèn)江市重點名校2025屆數(shù)學高一上期末學業(yè)水平測試模擬試題含解析_第1頁
江蘇省鎮(zhèn)江市重點名校2025屆數(shù)學高一上期末學業(yè)水平測試模擬試題含解析_第2頁
江蘇省鎮(zhèn)江市重點名校2025屆數(shù)學高一上期末學業(yè)水平測試模擬試題含解析_第3頁
江蘇省鎮(zhèn)江市重點名校2025屆數(shù)學高一上期末學業(yè)水平測試模擬試題含解析_第4頁
江蘇省鎮(zhèn)江市重點名校2025屆數(shù)學高一上期末學業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省鎮(zhèn)江市重點名校2025屆數(shù)學高一上期末學業(yè)水平測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設函數(shù),,則函數(shù)的零點個數(shù)是A.4 B.3C.2 D.12.已知是定義在上的奇函數(shù),且當時,,那么A. B.C. D.3.若用二分法逐次計算函數(shù)在區(qū)間內的一個零點附近的函數(shù)值,所得數(shù)據如下:0.510.750.6250.562510.4620.155則方程的一個近似根(精度為0.1)為()A.0.56 B.0.57C.0.65 D.0.84.盡管目前人類還無法精準預報地震,但科學家通過研究,已經對地震有所了解,例如,地震釋放出的能量E(單位:焦耳)與地震里氏震級之間的關系式為.年月日,日本東北部海域發(fā)生里氏級地震,它所釋放出來的能量是年月日我國四川九寨溝縣發(fā)生里氏級地震的()A.倍 B.倍C.倍 D.倍5.如圖,在平面四邊形中,,將其沿對角線對角折成四面體,使平面⊥平面,若四面體的頂點在同一球面上,則該求的體積為A. B.C. D.6.已知,,則()A. B.C. D.7.已知,則的最小值為().A.9 B.C.5 D.8.下列函數(shù)中,與函數(shù)的奇偶性相同,且在上單調性也相同的是A. B.C. D.9.函數(shù)f(x)=x2-3x-4的零點是()A. B.C. D.10.函數(shù),的值域為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.的邊的長分別為,且,,,則__________.12.已知函數(shù)(為常數(shù))的一條對稱軸為,若,且滿足,在區(qū)間上是單調函數(shù),則的最小值為__________.13.函數(shù)的值域是__________14.已知函數(shù),的值域為,則實數(shù)的取值范圍為__________.15.已知定義域為R的函數(shù),滿足,則實數(shù)a的取值范圍是______16.在直三棱柱中,若,則異面直線與所成的角等于_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)利用“五點法”完成下面表格,并畫出函數(shù)在區(qū)間上的圖像.(2)解不等式.18.已知cos(?α)=,sin(+β)=?,α(,),β(,).(1)求sin2α的值;(2)求cos(α+β)的值.19.已知冪函數(shù)的圖象過點.(1)求出函數(shù)的解析式,判斷并證明在上的單調性;(2)函數(shù)是上的偶函數(shù),當時,,求滿足時實數(shù)的取值范圍.20.已知奇函數(shù).(1)求值;(2)若函數(shù)的零點是大于的實數(shù),試求的范圍.21.已知函數(shù)的值域為,函數(shù).(Ⅰ)求;(Ⅱ)當時,若函數(shù)有零點,求的取值范圍,并討論零點的個數(shù).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】函數(shù)的零點個數(shù)就是函數(shù)的圖象和函數(shù)的圖象的交點個數(shù),分別畫出函數(shù)的圖象和函數(shù)的圖象,如圖,由圖知,它們的交點個數(shù)是,函數(shù)的零點個數(shù)是,故選B.【方法點睛】已知函數(shù)零點(方程根)的個數(shù)求參數(shù)取值范圍的三種常用的方法:(1)直接法:直接根據題設條件構建關于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉化成求函數(shù)值域問題加以解決;(3)數(shù)形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結合求解.一是轉化為兩個函數(shù)的圖象的交點個數(shù)問題,畫出兩個函數(shù)的圖象,其交點的個數(shù)就是函數(shù)零點的個數(shù),二是轉化為的交點個數(shù)的圖象的交點個數(shù)問題.2、C【解析】由題意得,,故,故選C考點:分段函數(shù)的應用.3、B【解析】利用零點存在性定理和精確度要求即可得解.【詳解】由表格知在區(qū)間兩端點處的函數(shù)值符號相反,且區(qū)間長度不超過0.1,符合精度要求,因此,近似值可取此區(qū)間上任一數(shù)故選:B4、C【解析】設里氏級和級地震釋放出的能量分別為和,可得出,利用對數(shù)的運算性質可求得的值,即可得解.【詳解】設里氏級和級地震釋放出的能量分別為和,由已知可得,則,故故選:C.5、A【解析】平面四邊形ABCD中,AB=AD=CD=2,BD=2,BD⊥CD,將其沿對角線BD折成四面體A'﹣BCD,使平面A'BD⊥平面BCD.四面體A'﹣BCD頂點在同一個球面上,△BCD和△A'BC都是直角三角形,BC的中點就是球心,所以BC=2,球的半徑為:;所以球的體積為:故答案選:A點睛:涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關系,或只畫內切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關系,列方程(組)求解.6、D【解析】由同角三角函數(shù)的平方關系計算即可得出結果.【詳解】因為,,,,所以.故選:D7、B【解析】首先將所給的不等式進行恒等變形,然后結合均值不等式即可求得其最小值,注意等號成立的條件.【詳解】.,且,,當且僅當,即時,取得最小值2.的最小值為.故選B.【點睛】本題主要考查基本不等式求最值的方法,代數(shù)式的變形技巧,屬于中等題.8、A【解析】先判斷函數(shù)為偶函數(shù),且在上單調遞增,再依次判斷每個選項的奇偶性和單調性得到答案.【詳解】易知:函數(shù)為偶函數(shù),且在上單調遞增A.,函數(shù)為偶函數(shù),且當時單調遞增,滿足;B.為偶函數(shù),且當時單調遞減,排除;C.函數(shù)為奇函數(shù),排除;D.,函數(shù)為非奇非偶函數(shù),排除;故選:【點睛】本題考查了函數(shù)的單調性和奇偶性,意在考查學生對于函數(shù)性質的綜合應用.9、D【解析】直接利用函數(shù)零點定義,解即可.【詳解】由,解得或,函數(shù)零點是.故選:.【點睛】本題主要考查的是函數(shù)零點的求法,直接利用定義可以求解,是基礎題.10、A【解析】首先由的取值范圍求出的取值范圍,再根據正切函數(shù)的性質計算可得;【詳解】解:因為,所以因為在上單調遞增,所以即故選:A二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由正弦定理、余弦定理得答案:12、【解析】根據是的對稱軸可取得最值,即可求出的值,進而可得的解析式,再結合對稱中心的性質即可求解.【詳解】因為是的對稱軸,所以,化簡可得:,即,所以,有,,可得,,因為,且滿足,在區(qū)間上是單調函數(shù),又因為對稱中心,所以,當時,取得最小值.故答案為:.13、【解析】利用換元法,將變?yōu)?,然后利用三角恒等變換,求三角函數(shù)的值域,可得答案.【詳解】由,得,可設,故,不妨取為銳角,而,時取最大值),,故函數(shù)的值域為,故答案為:.14、##【解析】由題意,可令,將原函數(shù)變?yōu)槎魏瘮?shù),通過配方,得到對稱軸,再根據函數(shù)的定義域和值域確定實數(shù)需要滿足的關系,列式即可求解.【詳解】設,則,∵,∴必須取到,∴,又時,,,∴,∴.故答案為:15、【解析】先判斷函數(shù)奇偶性,再判斷函數(shù)的單調性,從而把條件不等式轉化為簡單不等式.【詳解】由函數(shù)定義域為R,且,可知函數(shù)為奇函數(shù).,令則,令則即在定義域R上單調遞增,又,由此可知,當時,即,函數(shù)即為減函數(shù);當時,即,函數(shù)即為增函數(shù),故函數(shù)在R上的最小值為,可知函數(shù)在定義域為R上為增函數(shù).根據以上兩個性質,不等式可化為,不等式等價于即解之得或故答案為16、【解析】如圖以點為坐標原點,分別以為軸建立空間直角坐標系,利用空間向量求解即可.【詳解】解:因為三棱柱為直三棱柱,且,所以以點為坐標原點,分別以為軸建立空間直角坐標系,設,則,所以,所以,因為異面直線所成的角在,所以異面直線與所成的角等于,故答案為:【點睛】此題考查異面直線所成角,利用了空間向量進行求解,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)表格、圖象見解析;(2),.【解析】(1)根據正弦函數(shù)的性質,在坐標系中描出上或的點坐標,再畫出其圖象即可.(2)由正弦函數(shù)的性質得,,即可得解集.【小問1詳解】由正弦函數(shù)的性質,上的五點如下表:0000函數(shù)圖象如下:【小問2詳解】由,即,故,,所以,,故不等式解集為,.18、(1)(2)【解析】(1)利用可以快速得到sin2α的值;(2)以“組配角”去求cos(α+β)的值簡單快捷.【小問1詳解】∵,∴,∴,∴【小問2詳解】,,,則又,,則故19、(1),在上是增函數(shù);證明見解析(2)【解析】(1)冪函數(shù)的解析式為,將點代入即可求出解析式,再利用函數(shù)的單調性定義證明單調性即可.(2)由(1)可得當時,在上是增函數(shù),利用函數(shù)為偶函數(shù)可得在上是減函數(shù),由,,從而可得,解不等式即可.【詳解】(1)設冪函數(shù)的解析式為,將點代入解析式中得,解得,所以,所求冪函數(shù)的解析式為.冪函數(shù)在上是增函數(shù).證明:任取,且,則,因為,,所以,即冪函數(shù)在上是增函數(shù)(2)當時,,而冪函數(shù)在上是增函數(shù),所以當時,在上是增函數(shù).又因為函數(shù)是上的偶函數(shù),所以在上是減函數(shù).由,可得:,即,所以滿足時實數(shù)的取值范圍為.【點睛】本題考查了冪函數(shù)、函數(shù)單調性的定義,利用函數(shù)的奇偶性、單調性解不等式,屬于基礎題.20、(1)(2)【解析】(1)由奇函數(shù)的定義可得,即,化簡即可得答案;(2)原問題等價于,從而有函數(shù)的值域即為的范圍.小問1詳解】解:因函數(shù)為奇函數(shù),所以,即,所以,因為在上單調遞增,所以,即,解得;【小問2詳解】解:,由題意,,即,因為,所以,所以,又在上單調遞增,所以,所以的范圍為.21、(Ⅰ);(Ⅱ)答案見詳解.【解析】(Ⅰ)對分段函數(shù)求值域,分別求出每一段函數(shù)的值域,再求其并集即可;(Ⅱ)函數(shù)有零點,即表示方程有根,與函數(shù)圖像有交點,因而將換元,利用二次函數(shù)性質求出其值域,再數(shù)形結合討論零點個數(shù)即可.【詳解】(Ⅰ)如下圖所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論