云南省玉溪市元江縣第一中學2025屆高二數(shù)學第一學期期末質量檢測試題含解析_第1頁
云南省玉溪市元江縣第一中學2025屆高二數(shù)學第一學期期末質量檢測試題含解析_第2頁
云南省玉溪市元江縣第一中學2025屆高二數(shù)學第一學期期末質量檢測試題含解析_第3頁
云南省玉溪市元江縣第一中學2025屆高二數(shù)學第一學期期末質量檢測試題含解析_第4頁
云南省玉溪市元江縣第一中學2025屆高二數(shù)學第一學期期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省玉溪市元江縣第一中學2025屆高二數(shù)學第一學期期末質量檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知定義在上的函數(shù)的導函數(shù)為,且恒有,則下列不等式一定成立的是()A. B.C. D.2.已知,若,則()A. B.C. D.3.已知三角形三個頂點為、、,則邊上的高所在直線的方程為()A. B.C. D.4.在直三棱柱中,底面是等腰直角三角形,,點在棱上,且,則與平面所成角的正弦值為()A. B.C. D.5.已知直線l1:y=x+2與l2:2ax+y﹣1=0垂直,則a=()A. B.C.﹣1 D.16.已知集合,,則()A. B.C. D.7.2021年7月,某文學網站對該網站的數(shù)字媒體內容能否滿足讀者需要進行了調查,調查部門隨機抽取了名讀者,所得情況統(tǒng)計如下表所示:滿意程度學生族上班族退休族滿意一般不滿意記滿分為分,一般為分,不滿意為分.設命題:按分層抽樣方式從不滿意的讀者中抽取人,則退休族應抽取人;命題:樣本中上班族對數(shù)字媒體內容滿意程度的方差為.則下列命題中為真命題的是()A. B.C. D.8.“”是直線與直線平行的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.設集合,集合,當有且僅有一個元素時,則r的取值范圍為()A.或 B.或C.或 D.或10.以下說法:①將一組數(shù)據中的每一個數(shù)據都加上或減去同一個常數(shù)后,方差不變;②設有一個回歸方程,變量增加1個單位時,平均增加5個單位③線性回歸方程必過④設具有相關關系的兩個變量的相關系數(shù)為,那么越接近于0,之間的線性相關程度越高;⑤在一個列聯(lián)表中,由計算得的值,那么的值越大,判斷兩個變量間有關聯(lián)的把握就越大。其中錯誤的個數(shù)是()A.0 B.1C.2 D.311.已知圓,若存在過點的直線與圓C相交于不同兩點A,B,且,則實數(shù)a的取值范圍是()A. B.C. D.12.已知過點的直線l與圓相交于A,B兩點,則的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的離心率為__________________.14.若橢圓的長軸是短軸的2倍,且經過點,則橢圓的離心率為________.15.已知直線過點,,且是直線的一個方向向量,則__________.16.已知,則正整數(shù)___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C經過坐標原點O和點(4,0),且圓心在x軸上(1)求圓C的方程;(2)已知直線l:與圓C相交于A、B兩點,求所得弦長值18.(12分)如圖,在長方體中,,.點E在上,且(1)求證:平面;(2)求二面角的余弦值19.(12分)如圖,在四棱柱中,平面,底面ABCD滿足∥BC,且(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值.20.(12分)已知橢圓的右焦點為,短軸長為4,設,的左右有兩個焦點求橢圓C的方程;若P是該橢圓上的一個動點,求的取值范圍;是否存在過點的直線l與橢圓交于不同的兩點C,D,使得?若存在,求出直線l的方程;若不存在,請說明兩點21.(12分)已知圓的圓心為,且圓經過點(1)求圓的標準方程;(2)若圓:與圓恰有兩條公切線,求實數(shù)取值范圍22.(10分)已知等比數(shù)列前3項和為(1)求的通項公式;(2)若對任意恒成立,求m的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】構造函數(shù),用導數(shù)判斷函數(shù)單調性,即可求解.【詳解】根據題意,令,其中,則,∵,∴,∴在上為單調遞減函數(shù),∴,即,,則錯誤;,即,則錯誤;,即,則錯誤;,即,則正確;故選:.2、B【解析】先求出的坐標,然后由可得,再根據向量數(shù)量積的坐標運算求解即可.【詳解】因為,,所以,因為,所以,即,解得.故選:B3、A【解析】求出直線的斜率,可求得邊上的高所在直線的斜率,利用點斜式可得出所求直線的方程.【詳解】直線的斜率為,故邊上的高所在直線的斜率為,因此,邊上的高所在直線的方程為.故選:A.4、C【解析】取AC的中點M,過點M作,且使得,進而證明平面,然后判斷出是與平面所成的角,最后求出答案.【詳解】如圖,取AC的中點M,因為,則,過點M作,且使得,則四邊形BDNM是平行四邊形,所以.由題意,平面ABC,則平面ABC,而平面ABC,所以,又,所以平面,而所以平面,連接DA,NA,則是與平面所成的角.而,于是,.故選:.5、A【解析】利用兩直線垂直斜率關系,即可求解.【詳解】直線l1:y=x+2與l2:2ax+y﹣1=0垂直,.故選:A【點睛】本題考查兩直線垂直間的關系,屬于基礎題.6、A【解析】由已知得,因為,所以,故選A7、A【解析】由抽樣比再乘以可得退休族應抽取人數(shù)可判斷命題,求出上班族對數(shù)字媒體內容滿意程度的平均分,由方差公式計算方差可判斷,再由復合命題的真假判斷四個選項,即可得正確選項.【詳解】因為退休族應抽取人,所以命題正確;樣本中上班族對數(shù)字媒體內容滿意程度的平均分為,方差為,命題正確,所以為真,、、為假命題,故選:8、C【解析】先根據直線平行的充要條件求出a,然后可得.【詳解】若,則,,顯然平行;若直線,則且,即.故“”是直線與直線平行的充要條件.故選:C9、B【解析】由已知得集合M表示以點圓心,以2半徑左半圓,與y軸的交點為,集合N表示以點為圓心,以r為半徑的圓,當圓C與圓O相外切于點P,有且僅有一個元素時,圓C過點M時,有且有兩個元素,當圓C過點N,有且僅有一個元素,由此可求得r的取值范圍.【詳解】解:由得,所以集合M表示以點圓心,以2半徑的左半圓,與y軸的交點為,集合表示以點為圓心,以r為半徑的圓,如下圖所示,當圓C與圓O相外切于點P時,有且僅有一個元素時,此時,當圓C過點M時,有兩個元素,此時,所以,當圓C過點N時,有且僅有一個元素,此時,所以,所以當有且僅有一個元素時,則r的取值范圍為或,故選:B.10、C【詳解】方差反映一組數(shù)據的波動大小,將一組數(shù)據中的每個數(shù)據都加上或減去同一個常數(shù)后,方差不變,故①正確;一個回歸方程,變量增加1個單位時,平均減少5個單位,故②不正確;線性回歸方程必過樣本中心點,故③正確;根據線性回歸分析中相關系數(shù)的定義:在線性回歸分析中,相關系數(shù)為r,越接近于1,相關程度越大,故④不正確;對于觀察值來說,越大,“x與y有關系”的可信程度越大,故⑤正確.故選:C【點睛】本題主要考查用樣本估計總體、線性回歸方程、獨立性檢驗的基本思想.11、D【解析】根據圓的割線定理,結合圓的性質進行求解即可.【詳解】圓的圓心坐標為:,半徑,由圓的割線定理可知:,顯然有,或,因為,所以,于是有,因為,所以,而,或,所以,故選:D12、D【解析】經判斷點在圓內,與半徑相連,所以與垂直時弦長最短,最長為直徑【詳解】將代入圓方程得:,所以點在圓內,連接,當時,弦長最短,,所以弦長,當過圓心時,最長等于直徑8,所以的取值范圍是故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據雙曲線方程確定a,b,c的值,求出離心率.【詳解】由雙曲線可得:,故,故答案為:14、【解析】分類討論焦點在軸與焦點在軸兩種情況.【詳解】因為橢圓經過點,當焦點在軸時,可知,,所以,所以,當焦點在軸時,同理可得.故答案為:15、【解析】由題得,解方程組即得解.【詳解】解:由題得,因為是直線的一個方向向量,所以,所以,所以.故答案為:16、6【解析】根據組合數(shù)和排列數(shù)的運算即可求得答案.【詳解】由題意,,得.故答案為:6.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)求出圓心和半徑,寫出圓的方程;(2)求出圓心到直線距離,進而利用垂徑定理求出弦長.【小問1詳解】由題意可得,圓心為(2,0),半徑為2.則圓的方程為;【小問2詳解】由(1)可知:圓C半徑為,設圓心(2,0)到l的距離為d,則,由垂徑定理得:18、(1)證明見解析(2)【解析】(1)建立空間直角坐標系,分別寫出,,的坐標,證明,,即可得證;(2)由(1)知,的法向量為,直接寫出平面法向量,按照公式求解即可.【小問1詳解】在長方體中,以為坐標原點,所在直線分別為軸,軸,軸建立如圖所示空間直角坐標系因為,,所以,,,,,則,,,所以有,,則,,又所以平面小問2詳解】由(1)知平面的法向量為,而平面法向量為所以,由圖知二面角為銳二面角,所以二面角的余弦值為19、(Ⅰ)證明見解析;(Ⅱ)【解析】(Ⅰ)證明,根據得到,得到證明.(Ⅱ)如圖所示,分別以為軸建立空間直角坐標系,平面的法向量,,計算向量夾角得到答案.【詳解】(Ⅰ)平面,平面,故.,,故,故.,故平面.(Ⅱ)如圖所示:分別以為軸建立空間直角坐標系,則,,,,.設平面的法向量,則,即,取得到,,設直線與平面所成角為故.【點睛】本題考查了線面垂直,線面夾角,意在考查學生的空間想象能力和計算能力.20、(1)(2)(3)滿足條件的直線不存在,詳見解析【解析】根據條件直接求出,進而求出橢圓標準方程;設,表示出,求出其范圍;設CD的中點為;由,則;得到其斜率的乘積為,最后列取方程聯(lián)立計算即可.【詳解】解:由題意可知,,則;所以橢圓C的方程為:;由題意可知,,設,則,;所以的取值范圍是;假設存在滿足條件的直線,根據題意得直線的斜率存在;則設直線的方程為:;消化簡得:;,則;;設,則CD的中點為;,;,則;,即;即,無解;故滿足條件的直線不存在.【點睛】本題考查橢圓的簡單幾何性質,向量的數(shù)量積,直線的垂直,設而不求的思想方法,關鍵在于將幾何條件進行適當?shù)霓D化,還考查了學生的綜合運算能力,屬于中檔題.21、(1);(2).【解析】(1)根據給定條件求出圓C的半徑,再直接寫出方程作答.(2)由給定條件可得圓C與圓O相交,由此列出不等式求解作答.【小問1詳解】依題意,圓C的半徑,所以圓的標準方程是:.【小問2詳解】圓:圓心,半徑為,因

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論